	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

DIGITAL SIGNAL PROCESSING & APPLICATIONS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

- 1. Choose the correct alternatives for any fourteen of the following: $14 \times 1 = 14$
 - i) Digital signals are
 - a) discrete in time and discrete in amplitude
 - b) discrete in amplitude and quantized in amplitude
 - c) discrete in time and continuous in amplitude
 - d) discrete in amplitude and quantized in time.
 - ii) $x(n) = (1/3)^n u(n)$ is a
 - a) power signal
- b) energy signal
- c) both (a) and (b)
- d) none of these.
- iii) e^{jwn} is periodic only if
 - a) w is multiple of π
- b) n is multiple of π
- c) w is multiple of 2π
- d) both (b) & (c).

30310 (M.Tech)

[Turn over

- iv) $(1/N) \sum_{n = < N >} |x(n)|^2 = \sum_{k = < N >} |C_k|^2$ states the
 - Perseval's relation a)
 - Power of the signal x (n) b)
 - Energy of the signal c)
 - Both (a) & (b). d)
- Sufficient condition for existence of DTFT for an v) aperiodic sequence x (n) is
 - $\sum_{n=0}^{\infty} |x(n)| < \infty$
 - b) $\sum_{n=0}^{\infty} |x(n)| > \infty$
 - c) $\sum_{n=-\infty}^{\infty} |x(n)| < \infty$
 - $\sum_{n=-\infty}^{\infty} |x(n)| > \infty.$
- ROC of the X (z) is the vi)
 - set of some values of z for which X (z) attains a a) finite value
 - b) the value of z for which only X (z) attains the finite value
 - the value of X (z) for which a finite region can be c) defined
 - set of all values of z for which X (z) attains a finite d) value.

- vii) Which of the following statement(s) is/are true?
 - 1. ROC can contain pole
 - 2. If x (n) is causal sequence ROC is entire z-plane except z = 0
 - 3. ROC of a LTI stable system contains the unit circle.
 - a) All of these
- b) Only 2 & 3
- None of these c)
- d) Only 1 & 3.
- viii) Frequency response of the system $H\left(z\right) = 1/(1-3z^{-1})$
 - $\left|H\left(e^{jw}\right)\right| = \infty \& L H\left(e^{jw}\right) = 2\pi n$ a)
 - $\left|H\left(e^{jw}\right)\right| = 1 \& LH\left(e^{jw}\right) = \tan^{-1} 1/(1 3\cos w)$
 - c) $\left| H\left(e^{jw}\right) \right| = 1 \& L H\left(e^{jw}\right) = \tan^{-1}\left(1 3\cos w\right)$
 - $H\left(e^{jw}\right)$ does not exist. d)
- Two non-intersecting DTLTI system in cascade have ix) impulses g (n) and h (n). The impulse response of the combination is
 - $g(n) \cdot h(n)$
- b) g(n) + h(n)
- c)
- g(n) * h(n) d) $[g(n) \cdot h(n)]^{-1/2}$.
- $x(n) = \{1, 0, 0, 1\}$ and X(k) is the DFT of x(n). Now X) X(0) =
 - 2 a)

b) 1 + j

c) 0 d) 1 - i.

- The transfer function of a system with impulse response h(n) = u(n) - u(n-1) is
 - a)

- $z / \{(z-1)(z+1)\}\ d)$ 1. c)
- A DTLTI system with impulse response g (n) is BIBO stable if

 - a) $\sum_{n=-\infty}^{\infty} |g(n)| < \infty$ b) $\sum_{n=0}^{\infty} |g(n)| < \infty$
 - c) $\sum_{n=-\infty}^{\infty} |g(n)| < 1$ d) $\sum_{n=0}^{\infty} |g(n)| < 1$.
- xiii) z-transform of a causal sequence x (n) is $2/\left[1-\left(z^{-1}/2\right)\right]$ then x (0) is
 - 1/2 a)

b) 2

c) 1

- d) 4.
- xiv) If x (n) is a finite duration, two sided sequence, ROC of its z-transform is entire z-plane except
 - z = 0a)

b) z = 1

c) $z = \infty$

- d) both (a) & (c).
- The inverse z-transform of $1/(z-z^{-1})$ is
 - u(n) as well as -u(n-1)
 - only u(n)b)
 - c) u(n) as well as u(-n)
 - d) u(n) as well as u(n-1).
- xvi) The z-transform of u (n-1) is
 - a) $1/(1-z^{-1})$
- b) $z/(1-z^{-1})$
- c) $1/z (1-z^{-1})$ d) $1+z^{-1}$.

- What is warping effect? How can you remove it?
 Design a Butterworth filter for the following specification. Use
 Bilinear transformation technique.
 - i) 3 dB attenuation at 1.5 kHz
 - ii) 10 db attenuation at 3 kHz
 - iii) Sampling frequency F = 8000 Hz.

5 + 9

3. What is DFT ? Find out 4-pont DFT of x (n), where $x(n) = \{1, 2, 3, 4\}.$ Use matrix method.

What is FFT ? Find out 8-point FFT of x (n), where $x(n) = \{0, 1, 2, 3\}$. Use DIT algorithm. 5+9

4. Obtain the Direct form I, Direct form II, Cascade & parallel form realization of following system.

$$y(n) = -0 \cdot 1 y(n-1) + 0 \cdot 2 y(n-2) + 3 x(n) + 3 \cdot 6 x(n-1) + 0 \cdot 6 x(n-2)$$

5. Classify discrete time signals with examples. What is the causality condition for an LTI system? Determine the following system is

$$y(n) = 3y^{2}(n-1) - nx(n) + 4x(n+1) - x(n+1) n \ge 0$$

- i) Static/Dynamic
- ii) Causal/Non-causal
- iii) Linear/Non-linear
- iv) Time invariant/Time variant
- v) Stable/Unstable
- vi) FIR/IIR.

6 + 2 + 6

6. What is convolution sum ? What are the properties convolution sum follows ? Find out the convolution of the two signals given

$$x(n) = (1/3)^n u(-n-1)$$

$$h(n) = u(n-1)$$

Determine the impulse response of the given causal system.

$$y\;(\;n\;) + y\;(\;n-1\;) - 2y\;(\;n-2\;) = x\;(\;n-1\;) + 2x\;(\;n-2\;)$$

$$1 + 2 + 3 + 8$$

7. Determine & sketch the magnitude phase reponse of the following signal.

$$x(n) = n (1/2)^{|n|}$$

Determine the system function $H\left(z\right)$, impulse response of the given discrete time system described by the difference equation.

$$y(n) - y(n-1) + (3/16)y(n-2) = x(n) - (1/2)x(n-1)$$

Determine the stability of the system. Plot the pole-zero diagram. $\label{eq:condition} 6+8$