

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) The system $y(n)=x(n)+n x(n+1)$ is
a) linear time invariant
b) non-linear time invariant
c) linear time variant
d) none of these.
ii) $\quad e^{2 n} u(n)$ is
a) energy signal
b) power signal
c) both of these
d) none of these.
iii) If ROC of the Z-transform of a sequence is outside a circle of radius r, then the sequence is
a) causal
b) non-causal
c) anticausal
d) none of these.

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2013
iv) $\quad Z$-transform of $u(n-1)$ is
a) $\frac{1}{1-z^{-1}}$
c) $\frac{1}{z\left(1-z^{-1}\right)}$
d) $1+z^{-1}$.
b) $\frac{z}{1+z^{-1}}$
v) For an analog signal $=3 \cos 50 \pi t+10 \sin 300 \pi t$, the Nyquist sampling rate is
a) 150 Hz
b) 350 Hz
c) 25 Hz
d) 50 Hz .
vi) poles of Butterworth filter lie on
a) circle
b) ellipse
c) circle and ellipse
d) none of these.
vii) If $x(n)=\{j,-j\}$ then
a) $X(k)=\{2 j, 0\}$
b) $X(k)=\{0,0\}$
c) $X(k)=\{0,2 j\}$
d) $X(k)=(-j, j\}$.
viii) A causal system always has
a) right side sequences
b) left side sequences
c) both side sequences
d) none of these.
ix) The fundamental period of the sequence
$x(n)=\cos \left(\frac{2 \pi n}{3}\right)$ is
a) 1
b) 2
c) 3
d) 6 .
x) The value of the twiddle factor W_{8}^{2} is given by
a) 1
b) $-J$
c) $\frac{1}{\sqrt{2}}-\frac{j}{\sqrt{2}}$
d) -1 .

2. Explain quadrature mirror filter (QMF) Bank.
3. Sketch the down sample version of the signal $X(n)=\{1,-1,1,-1,2,-2,2,-2,3,-3,3,-3\} \quad$ for sampling rate reduction factor
a) $D=2$
b) $\quad D=3$.
4. Find the DFT of a sequence $x(n)=\{5,6,2,3\}$.
5. Realize the trasnposed structure of the sequence $y(n)=-0.1 y(n-1)+0.72 y(n-2)-0.7 x(n)-0.252 x(n-1)$.
6. Write a short note on rectangular window.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. Design an ideal HPF whose desired frequency response

$$
\begin{aligned}
H_{d}\left(e^{j w}\right) & =1, \pi \geq|w| \geq \pi / 4 \\
& =0,|w|<\pi / 4
\end{aligned}
$$

using Hanning window method for $N=11$.
8. Find $x(k)$ using DIT algorithm

$$
x(n)=\{0 \cdot 5,0 \cdot 5,0 \cdot 5,0 \cdot 5,0,0,0,0\} .
$$

9. a) State and prove the convolution property Z-transform.
b) Find the inverse Z-transform using convolution method

$$
\text { of } X(z)=\frac{z^{2}}{(z-1)(z-2)}
$$

c) Determine pole zero plot of the system

$$
\begin{array}{r}
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)-x(n-1) \\
3 \times 5
\end{array}
$$

10. Explain the characteristic of a limit cycle oscillation with respect to the system described by the equation $y(n)=0.95 y(n-1)+x(n)$ when the product quantization is up to 5 -bits rounding. The system is excited by an input $x(n)=0.75$ for $n=0$ and $x(n)=0$ for $n \neq 0$. Also determine the dead band of the filter.
11. a) Design an analog Butterworth filter that has a -2 dB pass band attenuation at frequency $20 \mathrm{rad} / \mathrm{s}$ and at least -10 dB stop band attenuation at frequency $30 \mathrm{rad} / \mathrm{s}$.
b) $\quad H(s)=\frac{2}{(s+1)(s+2)}, T=1 \mathrm{~s}$. Determine $H(z)$ impulse invariant method. $10+5$
