N.	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2013 2013

DIGITAL SIGNAL PROCESSING & APPLICATIONS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the	correct	altern	atives	for	the	follo	owing	: 1	0 ×	1	=	10)
----	--------	-----	---------	--------	--------	-----	-----	-------	-------	-----	-----	---	---	----	---

- i) The system y(n) = x(n) + nx(n+1) is
 - a) linear time invariant
 - b) non-linear time invariant
 - c) linear time variant
 - d) none of these.
- ii) $e^{2n}u(n)$ is
 - a) energy signal
- b) power signal
- c) both of these
- d) none of these.
- iii) If ROC of the Z-transform of a sequence is outside a circle of radius r, then the sequence is
 - a) causal

- b) non-causal
- c) anticausal
- d) none of these.

30417 (M.Tech)

[Turn over

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2013

- iv) Z-transform of u (n-1) is
 - a) $\frac{1}{1-z^{-1}}$
- b) $\frac{z}{1+z^{-1}}$
- c) $\frac{1}{z(1-z^{-1})}$
- d) $1 + z^{-1}$.
- v) For an analog signal = $3 \cos 50 \pi t + 10 \sin 300 \pi t$, the Nyquist sampling rate is
 - a) 150 Hz
- b) 350 Hz

c) 25 Hz

- d) 50 Hz.
- vi) poles of Butterworth filter lie on
 - a) circle

- b) ellipse
- c) circle and ellipse
- d) none of these.
- vii) If $x (n) = \{j, -j\}$ then
 - a) $X(k) = \{2j, 0\}$
- b) $X(k) = \{0, 0\}$
- c) $X(k) = \{0, 2j\}$
- d) X(k) = (-j, j).
- viii) A causal system always has
 - a) right side sequences
- b) left side sequences
- c) both side sequences
- d) none of these.
- ix) The fundamental period of the sequence

$$x(n) = \cos\left(\frac{2\pi n}{3}\right)$$
 is

a) 1

b) 2

c) 3

- d) 6.
- x) The value of the twiddle factor W_8^2 is given by
 - a)

- b) -J
- c) $\frac{1}{\sqrt{2}} \frac{j}{\sqrt{2}}$
- d) -1.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. Explain quadrature mirror filter (QMF) Bank.
- 3. Sketch the down sample version of the signal $X(n) = \{1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -3\}$ for sampling rate reduction factor
 - a) D = 2
 - b) D = 3.
- 4. Find the DFT of a sequence $x(n) = \{5, 6, 2, 3\}$.
- 5. Realize the trasnposed structure of the sequence $y(n) = -0.1 \ y(n-1) + 0.72 \ y(n-2) 0.7 \ x(n) 0.252 \ x(n-1).$
- 6. Write a short note on rectangular window.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

$$3 \times 15 = 45$$

7. Design an ideal HPF whose desired frequency response

$$H_d\left(e^{jw}\right) = 1, \ \pi \ge |w| \ge \pi/4$$
$$= 0, \ |w| < \pi/4$$

using Hanning window method for N = 11.

8. Find x (k) using DIT algorithm $x(n) = \{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0\}.$

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2013

- 9. a) State and prove the convolution property Z-transform.
 - b) Find the inverse Z-transform using convolution method of $X(z) = \frac{z^2}{(z-1)(z-2)}$.
 - c) Determine pole zero plot of the system

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) - x(n-1).$$

 3×5

- 10. Explain the characteristic of a limit cycle oscillation with respect to the system described by the equation $y(n) = 0.95 \ y(n-1) + x(n)$ when the product quantization is up to 5-bits rounding. The system is excited by an input x(n) = 0.75 for n = 0 and x(n) = 0 for $n \neq 0$. Also determine the dead band of the filter.
- 11. a) Design an analog Butterworth filter that has a -2~dB pass band attenuation at frequency 20 rad/s and at least -10~dB stop band attenuation at frequency 30~rad/s.
 - b) $H(s) = \frac{2}{(s+1)(s+2)}$, T = 1s. Determine H(z) impulse invariant method.

30417 (M.Tech)