Name:


Roll No. : $\qquad$
$\qquad$
CS/ M.Tech(TT)/ SEM-1/ MTT-104/ 2011-12 2011 THEORY OF TEXTILE STRUCTURE - I

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following. $\quad 5 \times 14=70$

1. a) Prove the theoretical relationship between contraction factor and surface twist angle of a twisted yarn. Hence, find out the relationship between retraction and surface twist angle.
b) What is the significance of using the equation $C_{y}\left(C_{y}-1\right)=\frac{1}{4} \tan ^{2} \alpha$ where, the symbols have their usual meanings.
c) Find out the relationship between true twist ( $T$ ), nominal twist $\left(T_{0}\right)$ of a twisted yarn. Hence, determine the maximum twist angle of a yarn that can be inserted in any textile operation.
2. a) Explain ideal migration with a neat diagram. Also plot the pattern of ideal migration envelop.

b) Determine the general equation expressing the ehange in radial position of a fibre with the ength measured along the fibre ( in ideal migration ) for a full migration period.
c) Prove that, the ideal migration equation for the first half cycle is $\left(\frac{r}{R}\right)^{2}=\frac{4 z}{z(1+\sec \alpha)}+\frac{4 z^{2} \tan ^{2} \alpha}{z^{2}(1+\sec \alpha)^{2}}$ where, the symbols carry the usual meaning.
3. a) Explain the crucial parameters for characterisation of migration behaviours in a yarn.
b) Prove that $\bar{Y}=\frac{1}{3} \cot ^{2} \alpha\left(\tan ^{2} \alpha+\sec \alpha-1\right)$ and $D=\frac{1}{3(1+\sec \alpha)}\left\{\frac{4}{5} \sec ^{2} \alpha+\frac{7}{5} \sec \alpha+\frac{4}{5}\right\}^{\frac{1}{2}}$.
c) How is migration mechanism affected by tension variation ? Explain.
4. a) Define 3-dimensional yarn elements with a neat diagram for the analysis of stress and strain on continuous filament yarn considering transverse force and lateral contraction. Also calculate the forces acting on these cuboidal yarn elements.
b) If $\sum f$ is the filament strain in above analysis, then show that $\Sigma f=\left(1-\sigma_{y} \tan ^{2} \theta\right) \sum f_{0}$ where, $\Sigma f_{0}$ is the filament strain without transverse force and lateral contraction for simple analysis of stress-strain model and $\sigma_{y}$ is the yarn lateral contraction ratio and $\theta$ is the twist angle.

5. a) Deduce the equation governing radical equiliberium in the yarn in terms of $g, u, c, \sigma_{1}$ and $\sigma_{y}$ ( all are representing the usual meanings ) and hence evaluate the relative level of tensile and transverse stresses throughout the twisted yarn.
b) Prove that, mean normalized yarn stress is

$$
\begin{equation*}
\frac{2}{1-c^{2}} \int_{C}^{1}\left[x \frac{c^{2}}{u^{2}}-g\left(1-\frac{c^{2}}{u^{2}}\right)\right] u \mathrm{~d} u \tag{4}
\end{equation*}
$$

6. a) Define the basic distribution of stresses and strains in the extended staple fibre yarn.
b) Derive the conditions for which a fibre will slip and magnitude of the tensions which can develop in slipping fibres.
c) What are the accessory fibre characteristics required for this analysis ?
7. a) What are the different levels of approach to analyse the staple yarn stress-strain mechanism? Discuss the approach related to approximate treatment on the staple spun yarns.
b) Write down the expression of mean normalized stress $\left(x_{s}\right)$ and the factor ( $\beta$ ) responsible for the reduction of stress in outer layer of staple fibre yarn and determine its application on whole yarn.
c) Explain the separate effects of obliquity $\left(\cos ^{2} \alpha\right)$ and slip ( $1-k \operatorname{cosec} \alpha$ ) with the help of numerical plot of the equation $\cos ^{2} \alpha(1-k \operatorname{cosec} \alpha)$.

8. a) Explain the mechanism of breakage of stapleyarn.
b) Compare the structure and properties of MVS yarns with ring and open end spun yarns.
c) Write the different categories of configuration of fibres within yarn in compact and ring spun yarns and compare between them.
9. a) What are the different rigidities of fibre affecting yarn structure? Explain briefly.
b) Describe the model to calculate the bending rigidity of yarn. What are the factors affecting the bending rigidity of the yarn.
c) For blended yarn of short staple fibre derive
$E_{L} / E_{B}=\left[B a \frac{E_{a}}{E_{b}}+\left(1-B_{a}\right)\right] V_{f} n_{L} n_{1} \theta$
( where the symbols have their usual meanings )
