

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $5 \times 14=70$

1. a) Calculate the reduction of stress in outer layer in staple yarn analysis.
b) How do you apply it in calculating the ratio of yarn modulus / fibre modulus ? 4
c) Calculate the values of $K$ with $L_{f}=6 \frac{2}{3} \mathrm{~cm}$; $a=2 \times 10^{-3} \mathrm{~cm}, Q=2.5 \mathrm{~cm}$ and $\mu=0 \cdot 25$, where the symbols have their usual meanings.
2. a) Calculate the critical stress $X_{C}$, when the fibre will be effectively gripped in the staple yarn.7

CS / M. Tech (TT)/SEM-1/MTT-104/2009-10

b) Calculate $X_{E, i}$ and $X_{E, o}$ where $X_{E, i}$ and $X_{E, o}$ are mean normalized stress in the fibres when the fibres migrating inwards and migrating outwards.
3. a) Derive a relation between pressure applied and volume of fibre assembly obtained by van Wyk's analysis.
b) For analysis of yarn compression, calculate the force per unit length of a yarn $Q\left(\eta_{1}\right)$ where $Q\left(\eta_{1}\right)$ has its usual meanings. (i.e. $\eta=\frac{d}{D_{i}}$ ).
4. a) For blended yarn of short staple fibre, derive
$E_{L} / E_{b}=\left[B_{a} \frac{E_{a}}{E_{b}}+\left(1-B_{a}\right)\right] V_{f} n_{L} n_{1 \theta}$
where the symbols have their usual meanings.
b) From this relation, find critical blend ratio $B_{\text {crit }}$ for realizing the reinforcement. What is its difference with minimum fibre-blend ratio $B_{\text {min }}$.
c) Explain the term length and fibre orientation-efficiency factor.
5. a) Write the assumptions made by Tredoar and Riding in their analysis of yarn tensile characteristics.ivan
b) Derive the specific stress $Y$ in the yarn.

$$
Y=2 / R_{0}^{2} \int_{0}^{R_{0}}\left[\phi\left(\in_{f}\right) \cdot \partial \in_{f} / \partial \in_{y} r_{0}\right] \mathrm{d} r_{0}
$$

where the symbols have their usual meanings.
c) What is the advantage of using this method ?
6. a) Write assumptions for analysis of tensile force of helically twisted filament yarn. Draw the basic radial element of the analysis.

Derive the governing radial equilibrium equation $\mathrm{d} G / \mathrm{d} u=-X+G / u$ in the filament yarn. The symbols have their usual meanings.
b) Calculate the mean normalized yarn stress $F y\left(\alpha, \sigma_{1}, \sigma_{y}\right)$. The symbols have their usual meanings.
7. a) Derive the conditions for migration to occur in a model of a seven ply structural migration.
b) Calculate the probability of yarn moving back at 4th possible migration in seven ply migration model. Explain the theoretical probability of inward migration when $p_{1}$ ( probability of yarn moving back at first migration $)=0$, equal probability.

CS / M. Tech (TT)/SEM-1/MTT-104/2009-10
c) Define ideal migration. Derive the equation $\mathrm{d} Z / \mathrm{d} r=\frac{r Q}{\left\{c R^{2}\left[1+(r / R)^{2} \tan ^{2} \alpha\right]^{\frac{1}{2}}\right\}}$
8. a) Write the different categories of configuration of fibres within yarn in compact and ring spun yarn and compare between them.
b) Discuss the nature of packing twist angle and distribution of twist angle in conventional ring spun and compact yarn and compare among them.
c) Describe the method to reconstruct the yarn segments of ring and compact yarn computationally.

