	Utech
Name:	
Roll No.:	In State of W. Samuring and Explana
Invigilator's Signature :	•••••

CS/M.TECH-ME(CSE)/SE/SEM-3/PGCSE-301(A), PGSE-301(A), PGCSE-302(A), PGSE-302(A)/2011-12

2011

IMAGE PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Objective Type Questions)

1.	wer <i>all</i> the questions :	
	a)	A 256 \times 256 image with 256 grey levels is to be transmitted through a 56 K modem.
		i) The spatial resolution of the image is
		ii) The No. of bits/pixel is
		iii) The time taken to transmit the image is
	b)	A pixel has a grey level value of 25 in the above image. After applying negation, the resulting grey level is
	c)	What are the drawbacks of region growing methods for segmentation?
	d)	What are the basic principles for segmentation?

40939 [Turn over

CS/M.TECH-ME(CSE)/SE/SEM-3/PGCSE-301(A), PGSE-301(A), PGCSE-302(A), PGSE-302(A)/2011-12

f) What do you mean by objective fidelity criterion? 1

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$

- 2. Describe the RGB colour model.
- 3. What is an image pyramid?
- 4. For the shape given below, write down the chain code, order number, difference and shape No. Which directional code are you using?

- 5. What do you mean by zero-crossing in relation with edge-detection and explain its significance in edge detection?
- 6. Write short note on runlength coding.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) List and describe three-point processing techniques used for image enhancement in the spatial domain. 12
 - b) What is filtering? List 2 functions of filters. What do Laplacian filters do?

40939 2

- 8. a) What is Fourier analysis? List 2 shortcomings of the Fourier transform. What is STFT?
 - b) What is a wavelet and what are its properties (mention 2)?
 - c) For the wavelet given below, answer the following questions:

- i) What types of wavelet is it?
- ii) What is the result of scaling by factor of 2?
- iii) What is the result of scaling by a factor of $\frac{1}{2}$ and time shifting by + 0.5 sec?
- d) With the help of a diagram, explain the basic steps of frequency domain filtering.
- 9. Write short notes on any *three* of the following: 3×5
 - a) Image Restoration
 - b) Erosion
 - c) Convolution
 - d) Fundamental steps in digital image processing
 - e) 2D Fourier transform.

1

CS/M.TECH-ME(CSE)/SE/SEM-3/PGCSE-301(A), PGSE-301(A), PGCSE-302(A), PGSE-302(A)/2011-12

- 10. a) Describe the Hough Transform method for edge linking.
 - b) Explain the region split and merge technique for image segmentation. 5
 - c) Describe the Otsu's method for threshold selection. 5
- 11. a) Explain the arithmetic coding for image compression using a suitable example. 5
 - b) Consider the following 4×4 , 8 bit image:

39	39	126	126
39	39	126	126
39	39	126	126
39	39	126	126

Determine the LZW coding in a step-by-step fashion for the above mentioned image.

c) What will be the Huffman coding for image given in Question No. 11(b)? Does it better than LZW coding?

2 + 2

=========

40939 4