|                           | Uleah                                    |
|---------------------------|------------------------------------------|
| Name:                     |                                          |
| Roll No.:                 | To Spream (1/ Executing 2 and Expellent) |
| Invigilator's Signature : |                                          |

## CS/M.Tech(IT-SE)/SEM-3/MSE-303G/2011-12 2011

## **DESIGN AND ANALYSIS OF ALGORITHM**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions.  $5 \times 14 = 70$ 

- 1. a) Write the RAM ( Random Access Machine ) program for  $n^n$  with proper comments.
  - b) Write down the codes for RASP ( Random Access Stored Program ) machine instruction.
  - c) Describe TM ( Turing Machine ) representation of RAM

    ( Random Access Machine ) and explain how the

    "ADD 20" instruction will work.

40418 [ Turn over

## CS/M.Tech(IT-SE)/SEM-3/MSE-303G/2011-12



- 2. a) Solve the equation  $T(n) = 3T(n/4) + cn^2$  using Recursion Tree Method.
  - b) Use Master theorem to solve:

i) 
$$T(n) = 2T(n/2) + n^3$$

ii) 
$$T(n) = 16 T(n/4) + n^2$$
.

c) Prove that

i) 
$$10n^2 + 4n + 2 = \Theta(n^2)$$

ii) 
$$6 \cdot 2^n + n^2 = 0 (2^n)$$
.

- 3. a) Find out the complexities of insertion sort.
  - b) Find out the complexity of Binary Search Tree. 4
  - c) Find out the average case complexity of Quick Sort. 6
- 4. a) Explain Greedy method with an algorithm. 4
  - b) Find an optimal solution to the knapsack instance n = 7, m = 15,  $(p_1, p_2, \dots p_7) = (10, 5, 15, 7, 6, 18, 3)$  and  $(w_1, w_2, \dots w_7) = (2, 3, 5, 7, 1, 4, 1)$ .
  - c) Explain Job sequencing with deadline problem. Let n = 4,  $(p_1, p_2, p_3, p_4)$  (100, 10, 15, 27) and  $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$ . Find all feasible solutions and their values. 2+4

40418

|     |    | CS/M.Tech(IT-SE)/SEM-3/MSE-803C/2011-12             |
|-----|----|-----------------------------------------------------|
| 5.  | a) | Explain General Backtrack algorithm. 4              |
|     | b) | Show the steps to get the solution to the 4-queen   |
|     |    | problem. 4                                          |
|     | c) | Explain the algorithm of N-Queen problem or Graph   |
|     |    | coloring problem. 6                                 |
| 6.  | a) | What is MST ? Give the algorithms for MST by Prim & |
|     |    | Kruskal. 6                                          |
|     | b) | For a graph of your choice find out BFS & DFS and   |
|     |    | comment about their complexities. 6                 |
|     | c) | Compare Graph & Tree. 2                             |
| 7.  | a) | Explain Dynamic Programming with example of TSP     |
|     |    | ( Travelling Salesman Problem ). 6                  |
|     | b) | Define the following: 4                             |
|     |    | i) Single source shortest path                      |
|     |    | ii) Single destination shortest path                |
|     |    | iii) Single pair shortest path                      |
|     |    | iv) All pairs shortest path.                        |
|     | c) | Write and explain Floyd-Warshall algorithm. 4       |
| 404 | 18 | 3 [ Turn over                                       |

UNIVERSITY OF TECHNOLOGY

## CS/M.Tech(IT-SE)/SEM-3/MSE-303G/2011-12



- 8. Write short notes on any *four* of the following :
  - a) 15-Puzzle problem
  - b) P, NP-Hard & NP-complete class
  - c) Union of Disjoint set
  - d) Circuit satisfiability problem
  - e) O/I knapsack problem
  - f) Fast Fourier Transformation.

40418

4