

CS/M.TECH(SE)/SEM-1/SE-103/2012-13

2012

ADVANCED STRUCTURAL ANALYSIS

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $5 \times 14=70$

1. A portal frame $A B C D$ is fixed at A and D. Columns $A B$ and $C D$ are 3.5 m and 4.5 m respectively. Beam BC is horizontal and 8 m long. Flexural rigidity of beam $B C$ is $3 \times 10^{4} \mathrm{kN} \mathrm{m}^{2}$ and for both columns is $2 \times 10^{4} \mathrm{kN} \mathrm{m}{ }^{2}$. The portal is subjected to a horizontal load of 30 kN at B acting towards C and a vertical load of 150 kN acting downwards at a distance of 3 m from B on $B C$. Analyze the portal by Matrix stiffness method and draw the bending moment diagram.
2. A three-span continuous beam $A B C D$ has ends A and D fixed and B, C simply supported. $A B=3 \mathrm{~m}, B C=6 \mathrm{~m}$ and $C D=4 \mathrm{~m}$. Flexural rigidity of $A B$ and $C D$ are $E I$ and that of $B C=2 E I$. A concentrated load of 100 KN acts at mid-span of $A B . B C$ supports a UDL of $20 \mathrm{KN} / \mathrm{m}$ and $C D$ carries two loads of 40 KN each at 1.5 m from two ends. Analyze the beam by matrix stiffness method and draw bending moment diagram.

CS/M.TECH(SE)/SEM-1/SE-103/2012-13

3. Using flexibility method analyze the truss in figure given below and find out vertical and horizontal displacement of joint B as well as horizontal displacement of joint C. All members have equal axial rigidity $E A$.

4. a) Derive the 'shape functions' for three noded onedimensional element following natural co-ordinate system.
b) Using the above 'shape functions' for three noded onedimensional element, develop 'shape functions' for nine noded rectangular element in natural co-ordinate system.
$7+7$
5. Derive the stiffness matrix of one-dimensional bar using three noded one-dimensional element if it is subjected to axial force only.
6. a) Derive 'shape functions' for one corner node and one mid-side node of 8 -noded Serendipity element in 'natural co-ordinate system'.
b) Form the stain-displacement matrix for the above element having two degrees of freedom (u, v) per node in 'plane stress condition'. The strain component for this case are $\left\{\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}\right\}^{\tau}$.
c) Evaluate the following integral by quadrature rule.

$$
I=\int_{-1}^{+1} \int_{-1}^{+1} \frac{1-\xi^{2}}{2+\eta^{2}} \mathrm{~d} \xi \mathrm{~d} \eta
$$

Given for sampling point, $\xi_{i}= \pm(1 \sqrt{3})$, weight factor, $\omega_{i}=0$.
7. Write short notes on the following topics :
a) Shape functions and its utility in finite element analysis
b) Use of 'Jacobian Matrix' in analysis of two-dimensional problems
c) Isoparametric finite element formation
d) Area co-ordinate and shape functions of triangular element based on that.
8. A thin rectangular plate subjected to inplane loads and supported as shown in the figure given below. Develop the stiffness matrix using three noded triangular elements :

