	Utech
Name:	<u>A</u>
Roll No. :	As franching (V Exemples for State Explored
Invigilator's Signature :	

CS/M.Tech(SE)/SEM-1/PGSE-104/2012-13 2012 ADVANCED ALGORITHMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

- 1. Answer any seven of the following:
- $7 \times 2 = 14$
- a) Write two heuristic functions for 8-puzzle problem.
- b) Write a non-deterministic algorithm for search operation.
- c) Write two basic characteristics of Dynamic programming.
- d) Write a general algorithm for greedy strategy.
- e) Differentiate between Prim's algorithm and Kruskal's algorithm for minimum spanning tree.
- f) What is approximation algorithm?

40671 Turn over

CS/M.Tech(SE)/SEM-1/PGSE-104/2012-13

- g) What is the best time complexity for the calculation of x^n ? Give an example.
- h) Derive the time complexity for Tower of Hanoi problem.
- i) Define speed up and efficiency of parallel algorithm.
- j) Draw the commonly believed relationship among P, NP,
 NP complete and NP-hard problems.

GROUP - B

Answer any *four* of the following. $4 \times 14 = 56$

- 2. a) Write an algorithm to multiply two *n*-bits numbers in an efficient way and derive its time complexity.
 - b) Rod cutting problem is stated as follows: Given a rod of length n inches and a table of prices P_i for $i=1,\,2,\,\ldots,\,n$, determine the maximum revenue R_n obtained by cutting up the rod and selling the pieces.
 - i) Write a dynamic programming algorithm for the above problem.
 - ii) Solve the following example using that algorithm for the piece of length 5. Show all the steps.

Length i :	1	2	3	4	5	6	7	8	9	10
Price Pi :	1	5	8	9	10	17	17	20	24	30

5 + (5 + 4)

40671 2

- 3. a) What is the greedy choice for activity selection problem? Write a gready algorithm for the above problem. What is the time complexity of the above algorithm?
 - b) Obtain a set of optimal Huffman codes for the messages (M_1, M_2, \dots, M_8) with relative frequencies $(q_1, q_2, \dots, q_8) = (5, 10, 2, 6, 3, 7, 12, 14)$. Draw the decode tree for this set of codes. (2 + 4 + 1) + 7
- 4. a) Write the properties of a Red Black tree.
 - b) Show the Red Black trees that result after successively inserting the keys 41, 38, 31, 12, 19, 8, 6 into an initially empty red black tree. Show each step of insertion.
 - c) Prove that a red black tree with *n*-internal nodes has height at most $2\log(n+1)$. 3+6+5
- 5. a) Solve the following 8-puzzle problem using A^* heuristic algorithm:

b) Write an approximation algorithm for travelling salesman problem and determine its approximation ratio? 6 + (4 + 4)

CS/M.Tech(SE)/SEM-1/PGSE-104/2012-13

- 6. a) What do you mean by parallel algorithm?
 - b) Briefly explain different computational models of parallel algorithm.
 - c) Explain with an example how two sorted sequences of numbers, stored in a Mesh computational model can be merged using odd-even merge algorithm.
 - d) What is the time complexity of the algorithm?

$$2 + 4 + 7 + 1$$

- 7. a) Define the classes P and NP.
 - b) Discuss what you mean by polynomial reduction.
 - c) Prove that circuit satisfiability problem is in *NP*.
 - d) Prve that Clique decision problem is *NP* complete.

4

2 + 2 + 4 + 6

40671