

CS/M. TECH (MT)/SEM-2/MTI-201/2012

 2012QUALITY \& RELIABILITY ENGINEERING

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions taking at least two from each Group.

GROUP - A

1. a) Define 'fitness for purpose'.
b) What are the eight dimensions of Quality ? Explain any four of them briefly.
c) Explain cost of Quality. 3
2. a) Briefly discuss the contributions of E. W Deming in Quality.
b) As per P.B. Crosby what are 'the absolute' in Quality Management?4
c) Briefly discuss the evolution of Quality. 4
3. a) Define Statistical Quality Control (SQC). 3
b) Explain 'Assignable causes' of variations with examples.

CS/M. TECH (MT)/SEM-2/MTI-201/2012
c) Explain with examples different characteristics that ean be measured by control chart.
d) A quality control inspector of a soft drink company has taken 19 samples with four observations each of the volume of bottles filled. The relevant data is given below. If the standard deviation of the bottling operations is 0.14 ounces by using this information, develop control limits of three standard deviation for the bottling operations and develop a control chart.

Sample No.	Observation (Volume in ounces)			
	1	2	3	4
1	15.85	16.02	15.83	15.93
2	16.12	16.00	15.85	16.01
3	16.00	15.91	15.94	15.83
4	16.20	15.85	15.74	15.93
5	15.74	15.86	16.21	16.10
6	15.94	16.01	16.14	16.03
7	15.75	16.21	16.01	15.86
8	15.82	15.94	16.02	15.94
9	16.04	15.98	15.83	15.98
10	15.64	15.86	15.94	15.89
11	16.11	16.00	16.01	15.82
12	15.72	15.85	16.12	16.15
13	15.85	15.76	15.74	15.98
14	15.73	15.84	15.96	16.10
15	16.20	16.01	16.10	15.89
16	16.12	16.08	15.83	15.94
17	16.01	15.93	15.81	15.68
18	15.78	16.04	16.11	16.12
19	15.84	15.92	16.05	16.12

CS/M. TECH (MT)/SEM-2/MTE20®12012
4. An analysis of failure of the output from UPS manufacturing company unit produced the following results:

UPS capacity
5

6
$7 \cdot 5$
10
15
20
No of failures
67
08
07 56 15 22

30 13

45 05

60 04

80
80
a) Construct a Pareto diagram.
b) Explain Cause and Effect diagram with neat sketch.
c) Define process capability.

GROUP - B

5. a) "Bath tub curve is the true indicator of expressing life cycle of a device." - Justify the statement.
b) Consider a system composed of 4 identical elements each with reliability $R=0.7$. What is the system reliability of 2 of the 4 active elements are required? 4
c) A receiver has an estimated failure rate of 200×10^{-6} failures per hour. Assuming constant failure rate, what are its MTBF and reliabity for a 1000 hour mission ?

CS/M. TECH (MT)/SEM-2/MTI-201/2012

d) "Severity class and criticality distinguishes the FMECA from FMEA." - Justify the statement. State various classes of severity class. $2+2$
6. a) Define 'State margin'.
b) Distinguish between 'ABC Classification' and 'VED Classification'.
c) How does Material Requirements Planning (MRP) useful for Material Resource Planning and Control ? Discuss with suitable flow chart.
d) Calculate the reliability and MTBF of the system shown (Fig.1) :

Fig. 1
7. a) Describe the system success states and transition rate tables for the block diagram (Fig 2) :

Fig. 2 Fig. 3 if all basic events assumed to be statistically independent and mutually exclusive of one another. Also find the minimum cut sets and determine the probability of event A with the help of minimum cutsets.

The probabilities of events are
$P(D)=20 \%, P(E)=12 \%, P(F)=5 \%$,
$P(H)=15 \%, \quad P(I)=10 \%, P(J)=5 \%$

Fig. 3
c) Transform the fault tree diagram of Fig. 3 into petrinet. 3

CS/M. TECH (MT)/SEM-2/MTI-201/2012
8. a) Discuss Arrhenions model for accelerated testing: ${ }^{3}$
b) Determine upper and lower 90% confidence estimates for a device that experienced 11 failures in 485,000 device operating hours in the field test. Assume constant failure rate. Also determine 80% confidence band.
c) Write short notes on the following : $3+4$ i) Duty Cycling
ii) The Chi-square test of Goodness of fit.

Degree Freedaen $\mu=$	0.005	3.010	0.025	ans	0.10	0.20	0.30	0.00	aso	a.to	0.70	0.80	090	0.95	a97s	0.960	, 8
		00		0.0	a,	a_{1}	0.1	0.3	0.5	4.7			2.7	38	40	6.6	7.9
2	a0	a0	0.1	0.1		${ }^{0.4}$	a7	10	14	3	24 $\times 8$ $\times 7$	${ }_{4}^{3.6}$	${ }_{6}^{4.6}$	60	24,	11.3	${ }_{12}^{10.6}$
3	${ }^{\text {a }}$	as	${ }_{0}^{0.2}$	0.7	${ }_{1.1}^{0.6}$	1.7	22	28	34	${ }_{40}$	4.	6.0	${ }_{7.8}$	95	11.1	133	12.9
${ }_{5}$	${ }_{4}$	0.6	0.8	1.2	1.6	23	$\frac{2.0}{3.0}$	3.7	4.4.	51	61	7.3	9.2	11.1	$1: 8$	15.1	16.7
	97	09	1.2	16	2.2	3.1	3.8	46	5.4	92	7.2	8.6	10.6	125	14.4	16.8	13.5
7	1.0	1.2	1.7	2.2	${ }^{2} .8$	3.8	57	53	${ }_{73}$	13	\%	9.8	13.0	15.1	100 115	185	22.3
${ }_{8}^{8}$	1.7	2.1	2.7	3.3	4.2	5.4	64	7.4	8.3	, 4	107	12.2	14.7	169	150	21.7	23.6
10	22	2.6	3.3	3.9	4.9	6.2	73	8.3	9.3	10.5	11.8	13.4	16.0	18.3	2.5	23.2	3.2
11	2.1	3.15	3.8	46	5.6	7.0	${ }_{8}{ }^{2}$	${ }^{92}$	10.3	15	129	14.6	178	19.7	219	24.7	268
12	3.16	4.1	5.0	5.9	${ }_{7.0}$	8.6	99	11.1	12.3	$11 / 6$	${ }_{15.1}^{129}$	17.8	19.6	$\underline{212.4}$	24.7	27.7	29.8
14	41	4.7			7.8.	8.5	108	12.1	13.3	14.7	162	182	21.1	23.7	24.1	29.1	31.3
15	4.6	5.2	6.3	7.3	8.6	103	11.7	13.0	14.3	15.3	173	19.3	22.3	23.0	27.5	306	52.8
16	51	58	69	8.0	93	11.2	126	14.0	15.3	14.8	18.4	205	22.5	27.3	${ }^{25.8}$	320	S4, 3
17	5.7	6.4	7.6	8.7	101	120	139	14.9	${ }_{17.3}^{16.3}$	11.8	195	216	24.8	27.6	$3 \mathrm{3L2}$	33.4	
18	63	70	8.2	9.4	109	129	1	1159	17.3	11.9	${ }^{211}$	228	260	28.9	31.9	-362	3781
19 20	${ }_{74}$	83	8	109	11.7	14.6	16.1	117.8	193	21.0	228	250	28.4	31.4	3.2	376	a0
21	8.0	8.9	103	11.6	13.2	15.4	173	18.8	203	27.0	23.9	26.	296	32.7	34.5	389	41.4
22	${ }^{8} 5$	9.9	11.0	123	14.0	17.3	18.1	197	22.3	2.0	24.9	273 284	3320	33,9	34,	${ }_{416}$	42.8
	9.9	10.9	12.4	13.8	15.7	18.1	195	21.7	22.3	2.1	27.1	296	33.2	36.4	34.4	43.0	456
25	10.5	11.5	13.1	14.6	16.5	18.9	20.5	22.6	24.3	2 k 1	28.2	307	34.4	37.1	466	44.3	46.9
26	11.2	12.2	13.8	15.4	17.3	19.8	21.8	23.6	28.3	27.2	29.2	318	356	38.9	4.9	45.6	48.3
27	${ }_{12.5}^{11.8}$	13.8	${ }_{15,3}$	16.9	${ }_{18.9}^{18.1}$	21.6	22.8	25.5	27.3	29.2	314	34.0	378	413	45	48.3	51.0
29	13.1	14.3	16.	177	19.8	27.5	24.	26.5	$2 \mathrm{2k} 3$	303	32.5	35.1	39.1	42.6	457	49.6	52.3
30	13.8	15.0	16.8	18.5	20.6	23.4	23.	27.4	29.3	31.3	33.5	36.3	40.3	43.8	4.0	50.9	53.7
35	17.2	18.5	20.5	225	24.8	27.8	50.	3273	343	335	38.9	41.8	${ }^{46.1}$	4988	51.2	57.3	603
45	24.3	23.9		26.5 306	39.1	32.3	\% 34.	420	393 443	${ }_{4}^{415}$	44.5	52.7	57.5	61.7	664		73.2
50	23.0	29.7	32.4	34.8	37.7	41.4	44.1	469	493	51.9	54.7	58.2	63.2	67.5	1.4	2	
75	47.2	49.5	52.9	56.1	99.8	64.5	68.1	71.3	74.3	75	809	NSO_{1}	91.1	96.2	to.	106	110
100	67.3	30.1	74.2	77.9	82.4	87.9	92.1	95.8	993	105	107	112	119	124	139	138	140

TABLE B. 2
Chi-square distribulion.
Value x^{2} such that $P\left(x<x^{\prime}\right)=a$

are distribulion.

