

CS/M.TECH(ME)/SEM-2/ME-1201/2010 2010 ROBOTICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

$$
\text { Answer any five questions. } \quad 5 \times 14=70
$$

1. a) Explain the laws of robotics from basic philosophy pertaining to the field.
b) What are basic components of a robot and how do they interact among themselves to meet the need ?
c) What is meant by work envelope ? With suitable sketch show the work envelope of a spherical and cylindrical robot.

$$
2+4+8
$$

2. a) With a block diagram differentiate forward kinematics to backward kinematics.

CS/M.TECH(ME)/SEM-2/ME-1201/2010
b) Using Denavit-Hartenberg (D-H) convention, write down transformation matrices for each link and represent the position and orientation of end-effector with respect to base for the robot shown in the following Figure 1. $4+10$

Fig. 1
3. a) With proper illustrations, classify industrial robot grippers according to their functionality and purpose.
b) What are the issues and aspects in designing autonomous anthropomorphic robot grippers under visual guidance ? Explain with hierarchical control strategies. $5+9$
4. a) What does Remote Center Compliance (RCC) mean ? With proper illustration show its functions.
b) Draw the block diagram of an intelligent robot. Discuss various types of sensors along with their applications that are used in industrial robots. $6+8$
5. a) What are the general considerations in path description and generation for any robotic manipulator?
b) What are the techniques adopted in collision free path planning in a robotic cell?
c) In a Stanford arm manipulator, the second joint is to move from an initial position of 30° to a final position of 78° in 3 seconds. Assume the joint starts and finishes a zero velocity. Find the cubic polynomial that satisfies this motion. Calculate the position, velocity and acceleration of this joint at intervals of 1 second and show their plots against time.
$2+4+8$
6. a) What are the different textual robot languages ? Discuss their relative merits and demerits.
b) In a pallet objects protruding 40 mm from the face of the pallet are located in a number of rows and columns. The pallet has 3 rows that are 30 mm apart and 4 columns that are 50 mm apart. The plane of the pallet is assumed to be parallel to the $\mathrm{X}-\mathrm{Y}$ plane. The rows are parallel to X -axis and the columns are parallel to Y -axis. The objects are to be picked up one after another from the pallet and to be placed in a location chute. The pallet has been shown in Figure 2. Write the programme for depalletizing operation. $6+8$

Fig. 2

CS/M.TECH(ME)/SEM-2/ME-1201/2010

a) ANN approach in prehension
b) Force \& Torque sensors
c) Nano-robotics
d) Tele-robotics
e) Singularity in Robot Dynamics
f) Robot application in medical science.

