	<u>Unedh</u>
Name:	
Roll No.:	A Alamon O'S annulate and Explant
Inviailator's Sianature:	

CS/M.TECH (ME)/SEM-2/ME -201/2011

2011 APPLICATION OF MECHATRONIC SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* of the following. $5 \times 14 = 70$

- 1. a) Why is sensor needed in mechatronic systems?
 - b) Mention the name of a sensor for measuring each of the following parameters.
 - i) Angular position
 - ii) Force
 - iii) Torque
 - iv) Touch
 - v) Slip 5
 - c) What are the different types of encoders used in robotics? Which one is more advantageous and why? 4
 - d) Describe a proximity detector for sensing metallic object.

30111 (M. Tech) [Turn over

CS/M.TECH (ME)/SEM-2/ME -201/2011

2.	a)	Explain with a block diagram the functions of a robo	t
		vision system.	5
	b)	Explain two different applications of robot vision	n
		system.	4
	c)	Classify robot programming languages and differentiat	e
		between them. What are 'joint interpolated motion' and	d
		'straight line motion' instructions?	5
3.	a)	Mention different sensors used in a washing machine.	
			2
	b)	What type of motors are used in such a system? What	ιt
		type of control technique is used for those motors?	2
	c)	Explain with a neat block diagram the sequence of	of
		operation of a microprocessor controlled washin	g
		machine.	6
	d)	Draw a detailed block diagram of an automatic camera	1 .
		What are the different sensors used in such a system?	4
4.	a)	State the first law of Robotics given by Isaac Asimov.	2
	b)	Name the elements of robot controller.	4
	c)	Define degrees of freedom of a robot.	3
	d)	Show two configurations of manipulator including arr	n
		portion and wrist portion by graphic representation.	5

5.	a)	Draw spherical co-ordinate robot using graphical
		symbol along with the workspace.
	b)	Explain the control loop of a servo-controlled robot
		using a neat diagram. 5
	c)	Define repeatability of a robot. 2
	d)	Show the vertical stroke and horizontal stroke of a
		manipulator with neat sketch. 3
6.	a)	Name four types of kinematic device used to actuate the
		finger movement. 2
	b)	Show the working principle of cam actuated gripper
		with a neat sketch.
	c)	Give four examples of robot tool.
	d)	Explain the use of grinder as a tool for removing rough
		edges from castings. 3
	e)	Distinguish between compliance and stiffness of
		actuator. 4
7.	a)	Show the main parts of a hydraulic actuation system
		with neat sketch.
	b)	Name four applications in machine loading and
		unloading. 2
	c)	Explain the application of robot in die-casting. 3
	d)	Define numerical control machine tools. 2
	e)	Explain the closed loop control of CNC with a neat
	•	diagram. 3
005		
.7111	1 1 (1)/	Tooh) 2 Turn over

- 8. a) Define robot kinematics.
 - b) Consider a planar three-link manipulator with three rotary joints and parallel jaw gripper as the end effector. All the joint axes are parallel and are pointing out of the paper.

- i) Assign all co-ordinate frames using Denavit-Hartenberg convention.
- ii) Calculate the homogenous transformation matrices $^0A_1,\ ^1A_2,\ ^2A_3$
- iii) Derive the forward kinematics ${}^{0}T_{3}$. 2 + 5 + 2
- c) Define the term trajectory planing.

3