	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (ME)/SEM-1/ME-105/2011-12 2011

SIGNAL CONDITIONING AND DATA ACQUISITION SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $5 \times 14 = 70$

- 1. a) Why impedance matching is important in signal conditioning? Explain with an example.
 - b) Consider a sensor having I/O relationship as

 V_{out} = V_0 exp (- α . V_{in}) where V_0 and α are constants. How can linear I/O relationship be obtained using proper signal conditioning ?

40691 [Turn over

c) The divider circuit, as shown in figure given below has $R_1 = 5k\Omega$ and $V_s = 5V$. Suppose R_2 is a sensor whose resistance varies from 2 Ω to 4 $k\Omega$ as some variable varies over a range. Find (i) the minimum and maximum of V_D , (ii) the range of output impedance and (iii) the range of power dissipated by R_2 .

4 + 3 + 7

- 2. a) What is 'lead compensation'? Draw and explain a signal conditioning circuit that can be used to achieve lead compensation.
 - b) A bridge circuit is used with a sensor located 100 m away. The bridge is not lead compensated and the cable to the sensor has a resistance of 0.45 Ω/m . The bridge nulls with R_1 = 3400 Ω , R_2 = 3445 Ω and R_3 =1560 Ω . What is sensor resistance?
 - c) Draw and explain the 'span' and 'zero' adjustment network. 5+5+4
- 3. a) What is notch out frequency? Write down its expression. Design a notch filter for 50 Hz power line frequency rejection.

2

40691

- b) A measurement signal has frequency of < 1kHz, but there is unwanted noise at 1 MHz. Design a low pass filter that attenuates the noise to 1%. What is the effect of measurement signal at its maximum of 1 kHz?
- c) Draw and explain a voltage to current converter circuit with grounded load. 5 + 5 + 4
- 4. a) Draw and explain the circuit of an 'Instrumentation Amplifier'. Mention its advantages.
 - b) A sensor outputs a voltage ranging from -2.4 to -1.1 V. For interface to an analog to digital converter this needs to be 0-2.5 V. Design the signal conditioning circuit using 'Instrumentation Amplifier'.
 - c) What is 'ladder diagram' in relation with PLC? Draw a ladder diagram for a motor having the following conditions.

The motor starts when the *NO* 'start' push button is pressed. A green light will glow at that time. The motor will run till *NC* 'stop' push button is pressed. When the 'stop' push button is pressed, the motor will stop and a red light will glow. 4 + 5 + 5

- 5. a) What type of ADCs are used for DAS and why?
 - b) Draw and explain a Multichannel DAS with parallel conversion scheme. Mention its advantages.
 - c) Why sample and hold circuit is necessary with *ADC*? Draw and explain the operation of switched *OP-AMP* based sample and hold circuit. Mention its advantages.

2 + 5 + 7

CS/M.Tech (ME)/SEM-1/ME-105/2011-12

6. a) Draw a R-2R ladder circuit of n bit DAC and prove that analog output voltage is equal to

$$V_o = -\frac{V_{ref}}{2^N} \cdot \frac{R_f}{3R} \left(2^{n-1} b_{n-1} + 2^{n-2} b_{n-2} + \dots + 2^1 b_1 + 2^o b_o \right)$$

b) Determine the output voltage of the circuit as shown in the figure, when digital inputs are 1001 and 1101.

c) What is the percentage resolution of 4 bit DAC?

$$8 + 4 + 2$$

- 7. a) Write the difference between MUX and DEMUX with examples.
 - b) Design 16: 1 multiplexer using
 - (i) 2:1 MUX,
 - (ii) 4:1 MUX and
 - (iii) 8:1 MUX.
 - c) Implement the Boolean function

$$F(A, B, C, D) = \sum (0,1,4,5,9,10,14,15)$$
 using multiplexer.

4

$$4 + 6 + 4$$

8. Write short notes on any two of the following:

$$7 + 7$$

- a) Dual slope Integration ADC
- b) Successive approximation ADC
- c) Characteristics of DAC
- d) Data logger.