	Utech
Name:	A
Roll No.:	A Share (V Knowledge Test State and
Inviailator's Sianature :	

CS/M.TECH(ME)/SEM-1/MM(ME)-101/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

1. a) An incomplete distribution is given below:

Class	0- 10	10-20	20-30	30-40	40-50	50-60	60-70	Total
Frequency	10	20	5	40	٠.	25	15	170

The median is 35. Find the missing frequencies.

b) Given the following bivariate data:

x	1	5	3	2	1	1	7	3
у	6	1	0	0	1	2	1	5

Fit the regression line of y on x and that of x on y. Predict y when x = 10 and x when y = 2.5. 7 + 7

40004 [Turn over

CS/M.TECH(ME)/SEM-1/MM(ME)-101/2011-12

b) Use the method of least squares to fit a parabola to the following data:

	х	1	2	3	4	5	6	7	8	9
ĺ	y	2	6	7	8	10	11	11	10	9

7 + 7

- 3. a) Let $x_0, x_1, ..., x_n$ be n+1 distinct points in the interval [a, b] and let $y_0, y_1, ..., y_n$ be any set of n+1 real numbers. Then show that there exist a unique polynomial p(x) in p_n such that $p(x_j) = y_j$ for $0 \le j \le n$.
 - b) If y(1) = -3, y(3) = 9, y(4) = 30 and y(6) = 132, find the interpolation polynomial that takes the same values as the function y at the given points. 7 + 7
- 4. a) Determine the largest eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$ correct to two

decimal places using power method.

b) Solve the following system of equations, correct to 2 decimal places, by Newton-Raphson method with (1,2) as initial approximation:

$$\sin xy + x - y = 0$$

$$y \cos xy + 1 = 0$$

$$7 + 7$$

40004 2

$$y'' + y = x$$
, $0 < x < 1$

$$y(0) = 0$$
, $y(1) = 0$

by Rayleigh-Ritz method using the approximation function $W(x) = x(1-x)(a_1 + a_2x)$.

- 6. a) A semi-infinite solid x > 0 is initially at temperature zero. At time t > 0, a constant temperature u_0 is applied and maintained at the face x = 0. Use Laplace transform technique to find the temperature at any point of the solid at any time t > 0.
 - b) Use Laplace transform to solve the initial value problem $\left[D^2 + tD 1 \right] y = 0$ $y(0) = 1, \ y'(0) = 1$

where *D* stands for
$$\frac{d}{dt}$$
. 7 + 7

- 7. a) A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form $y = \lambda \sin \frac{\pi x}{L}$ from which it is released from rest at time t = 0. Find the displacement of any point on the string at any time t by the method of separation of variables.
 - b) The faces of a thin rectangular copper plate of sides a and b are perfectly installed. The temperature equals a specified function f(x) on the lower side and 0 on the other three sides of the plate. Find the steady state temperature u(x, y) in the plate by the method of separation of variables.

CS/M.TECH(ME)/SEM-1/MM(ME)-101/2011-12

- 8. a) Find the Fourier Transform of $f(x) = e^{-a^2}$
 - b) Express the function f(x) = 1, $0 \le x \le \pi$

$$= 0, x > \pi$$

as a Fourier cosine Integral. Hence evaluate

$$\int_0^\infty \frac{\cos px \sin p\pi}{p} \, \mathrm{d}p \,. \tag{7+7}$$

40004

4