

CS/M.TECH(ME)/SEM-1/MM(ME)-101/2011-12

2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $\quad 5 \times 14=70$

1. a) An incomplete distribution is given below :

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	Total
Frequency	10	20	$?$	40	$?$	25	15	170

The median is 35 . Find the missing frequencies.
b) Given the following bivariate data :

x	1	5	3	2	1	1	7	3
y	6	1	0	0	1	2	1	5

Fit the regression line of y on x and that of x on y.
Predict y when $x=10$ and x when $y=2 \cdot 5$. $7+7$
2. a) During a countrywide investigation the incidence of TB was found to be 1%. In a college of 400 strength 5 were reported to be affected whereas in another college of 1200 strength 10 were reported to be affected. Does this indicate any significant difference ?
b) Use the method of least squares to fit a parabola to the following data :

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

$$
7+7
$$

3. a) Let $x_{0}, x_{1}, \ldots, x_{n}$ be $n+1$ distinct points in the interval [a, b] and let $y_{0}, y_{1}, \ldots, y_{n}$ be any set of $n+1$ real numbers. Then show that there exist a unique polynomial $p(x)$ in p_{n} such that $p\left(x_{j}\right)=y_{j}$ for $0 \leq j \leq n$.
b) If $y(1)=-3, y(3)=9, y(4)=30$ and $y(6)=132$, find the interpolation polynomial that takes the same values as the function y at the given points. $7+7$
4. a) Determine the largest eigenvalue and the corresponding eigenvector of the matrix $\left[\begin{array}{ccr}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$ correct to two decimal places using power method.
b) Solve the following system of equations, correct to 2 decimal places, by Newton-Raphson method with $(1,2)$ as initial approximation :
$\sin x y+x-y=0$
$y \cos x y+1=0$
5. Solve the boundary value problem :

$$
\begin{aligned}
& y^{\prime \prime}+y=x, \quad 0<x<1 \\
& y(0)=0, y(1)=0
\end{aligned}
$$

by Rayleigh-Ritz method using the approximation function $W(x)=x(1-x)\left(a_{1}+a_{2} x\right)$.
6. a) A semi-infinite solid $x>0$ is initially at temperature zero. At time $t>0$, a constant temperature u_{0} is applied and maintained at the face $x=0$. Use Laplace transform technique to find the temperature at any point of the solid at any time $t>0$.
b) Use Laplace transform to solve the initial value problem $\left[D^{2}+t D-1\right] y=0$
$y(0)=1, y^{\prime}(0)=1$
where D stands for $\frac{\mathrm{d}}{\mathrm{d} t}$.
7. a) A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form $y=\lambda \sin \frac{\pi x}{L}$ from which it is released from rest at time $t=0$. Find the displacement of any point on the string at any time t by the method of separation of variables.
b) The faces of a thin rectangular copper plate of sides a and b are perfectly installed. The temperature equals a specified function $f(x)$ on the lower side and 0 on the other three sides of the plate. Find the steady state temperature $u(x, y)$ in the plate by the method of separation of variables. $7+7$
8. a) Find the Fourier Transform of $f(x)=e^{-a^{2} x^{2}}$
b) Express the function $f(x)=1,0 \leq x \leq \pi$

$$
=0, x>\pi
$$

as a Fourier cosine Integral. Hence evaluate

$$
\int_{0}^{\infty} \frac{\cos p x \sin p \pi}{p} \mathrm{~d} p
$$

$=$ = $=$ = $=$ = $=$ = $=$ =

