	Uiteah
Name:	
Roll No.:	A Descript Name of Sail Explored
Invigilator's Signature :	

CS/M.Tech(ECE-M.Comm)/SEM-3/MCE-302A/2012-13 2012

EMI/EMC

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the remaining.

1. Explain any *two* of the following :

- $2 \times 5 = 10$
- a) Explain why microstrip line is supported by quasi-TEM mode.
- b) Why are electronic equipment required for the compatibility to EMC and EMI?
- c) How frequency and phase distortion affect the EM wave?
- d) Draw the E & H-fields of a microstrip line.

40380 Turn over

CS/M.Tech(ECE-M.Comm)/SEM-3/MCE-302A/2012-13

A transmission line has the following parameters $Z_0 = 300 \Omega$, $Z_1 = 300 (1 - j) \Omega$ and propagation constant $\gamma = 0.054 + j3.53$ per m.

Determine —

2.

- The reflection co-efficient at the load. i)
- The transmission co-efficient at the laod. ii)
- iii) Reflection co-efficient at any point 2 m away from the load. 9
- Find out the expression of Z_{in}^{s} in terms of phase b) consant of a lossless short circuited line of length *l*. 6
- 3. Show with graphical representation that short circuited a) $Z_{\rm in}$ of a line is inductive when $n\pi < 1 < (2n+1)\pi/2$ and capacitive when $(2n + 1) \pi/2 < 1 < (n + 1) \pi$. Also find out the expression of equivalent induction and 6 + 3capacitance.
 - b) Explain the phase and frequency distortion of a transmission line. 6

40380 2 CS/M.Tech(ECE-M.Comm)/SEM-3/MCE-302A/2

$$\frac{\Delta f}{f_0} = 2 - \frac{4}{\pi} \cos^{-1} \left| \frac{2 |\Gamma_m| \sqrt{Z_I Z_L}}{(Z_L - Z_I) \sqrt{1 - |\Gamma_m|^2}} \right|$$

Where $\Gamma_m = \text{Maximum reflection co-efficient of the line.}$

 Z_I = Line impedance

$$Z_L$$
 = Load impedance.

- b) What are the required length $\lambda g/4$ and impedance of a transformer that will match a 100 Ω load to a 50 Ω air filled line at 10 GHz? Consider both rectangular wave guide (2.286 cm × 1.016 cm) and coaxial line cases. What is the frequency band of operation for a coaxial line over which the reflection co-efficient remains less than 0.1?
- 5. a) In a multi-section $\lambda/4$ transformer prove that the impedance of the nth section $Z_n = \sqrt{Z_{n-1} Z_{n+1}}$. 6
 - b) Explane how multiple-reflection at a juction effect the wave propagation. Prove that the total reflection coefficient of a multiple section is $\Gamma = \Gamma_1 + \Gamma_{3\theta} j2\theta$, just that obtained by taking only 1st order reflection into account.

40380

8

CS/M.Tech(ECE-M.Comm)/SEM-3/MCE-302A/2012-13

- 6. a) An empty rectangular wave guide is matched to a dielectric filled wave guide (k = 2.56) in TE_{10} mode at 10 GHz by means of a $\lambda/4$ transformer. Find the length and dielectric constant of the matching section. The broader dimension of the wave guide is a = 2.5 cm. 7
 - b) Explain with suitable expression the binomial transformation of a multi-section line. What advantage do you get from Chebyshev transformer? 4+4
- 7. a) What are the limitations of microstrip line at microwave frequencies? Find out the expression of dielectric loss tangent of a microstrip line. 3+4
 - b) In a microstrip line find out the following parameters : (a) Line width (W) (b) effective length $L_{\rm eff}$ (c) Line extension due to fringing field.

(Given = 4.4, t/w = 0.4, operating frequency = 5.25 GHz).

8

- 8. Write shorts notes on any three of the following: 3×5
 - a) EMC in health care unit
 - b) Significantce of S11 and S21 of two-port transmission line?
 - c) Stub matching

40380

- d) Quarter wave transformer
- e) Radiated susceptibility.

4