

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Attempt all questions :
a) Define numerical aperture (NA) of a fibre. On what factors does it depend ?
b) What is gain ripple in a SOA ?
c) Mention two applications of optical amplifier.
d) What is the difference between spontaneous emission and stimulated emission?
e) Differentiate active and passive optical devices.
CS/M.Tech (ECE-COMM)/SEM-2/MCE-201/2012

f) There is a fibre optic star network cantaining 10 stations in which station is located at a distancel of 500 metres from the star coupler and fibre attenuation is $0 \cdot 4 \mathrm{~dB} / \mathrm{km}$. If excess loss and connector loss in the network be 1.25 dB and 1.0 dB respectively, determine the power margin between the transmitter and the receiver in the star network.
g) What are the different SONET layers ?
2. a) What are the essential requirements in selecting the material for manufacturing optical fibres ?
b) In what way the photonic crystal fibre differs from the photonic bandgap fibre ? 3
c) What are the advantages of the optical fibre communication system?4
d) Calculate the NA of a step-index fibre having $n 1=1.48$ and $n 2=1 \cdot 46$. What is the maximum entrance angle for this fibre if the outer medium is air with $n=1 \cdot 00$?4
3. a) What is the necessity of optical amplification? 2
b) Explain the basic principle of operation of semiconductor optical amplifier. 4

CS / M.Tech (ECE-COMM)/SEM-2 / MCE-201/2012 UREG
c) What requirements must be met so athat a semiconductor $D H$ functions efficiently as an optical amplifier?
d) What is 3 dB saturation power of a SOA ? Find out its value.
$1+3$
4. a) Name the most commonly used optical sources in FOC. Why are they so frequently used? $1+2$
b) What are the Einstein's co-efficients ? Derive the threshold condition for laser action. $2+3$
c) What is an internal quantum efficiency of an LED ? Derive it.
d) Mention the different loss-mechanisms that the photon may encounter when produced in a semi-conductor. 2
5. a) Define different types of losses of passive linear buses in optical network. Obtain the expression for
i) Nearest Neighbour Power Budget.
ii) Largest Distance Power Budget.
b) Briefly explain multichannel amplitude modulation in optical communications.

CS/M.Tech (ECE-COMM)/SEM-2/MCE-201/2012
6. a) Consider a commercially available 32×32 single mode coupler made from a cascade of 3 aB fused fibre 2×2 couplers where 5% of power is lost in each element. Determine
i) The number of $3 \mathrm{~dB} 2 \times 2$ couplers required to construct the 32×32 star coupler.
ii) Excess loss
iii) Splitting loss.
b) Explain how wavelength division multiplexing and demultiplexing with four wavelengths can be achieved with
i) Fibre Bragg grating and circulators
ii) Dielectric thin film filters.
7. a) Find the data rate of STS-3 signal. What is the duration of STS-3 frame? What is the duration of STS-9 frame?

$$
2+1+1
$$

b) Explain how a four fibre bidirectional line switched ring can be reconfigured in case of node failure ?4
c) Discuss optical crossconnect architecture using optical space switches and no wavelength converters.

