

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct answers for any ten of the following :

$$
10 \times 1=10
$$

i) A linear code C of minimum distance $\mathrm{d}_{\text {min }}$ can detect upto t errors if and only if
a) $\mathrm{d}_{\text {min }} \geq t+1$
b) $\quad \mathrm{d}_{\text {min }} \leq t+1$
c) $\mathrm{d}_{\text {min }} \geq 2 t+1$
d) $\quad \mathrm{d}_{\min } \leq 2 t+1$.
ii) For BCH code, block length, n is equal to
a) $2^{m}-1$
b) $\quad 2^{m}$
c) $2^{\mathrm{m}}+1$
d) $\left.\quad\left\{2^{\mathrm{m}}-1\right) / 2\right\}$.
CS/M.TECH (ECE-COMM)/SEM-2/MCE-202/2012
iii) Relationship among information rate, mes
entropy is

a) $r=R H$	b) $R=r H$
c) $R=r^{2} H$	d) $R=r^{3} H$.

iv) If the two codes have same set of codewords, code is known as
a) Galoy code
b) Hoffmann code
c) Self-dual code
d) Dual code.
v) Field elements that can generate all the non-zero elements of a field are said
a) Galois field
b) Shannon-Fano Code
c) Primitive
d) Cyclic code.
vi) Given the vectors $u=(2,7,1)$ and $v=(10,-3,8)$, value of ($24-6 \mathrm{v}$) is equal to
a) $(-66,35,-54)$
b) $(-66,30,54)$
c) $(60,30,10)$
d) $(10,20,30)$.
vii) Polynomial that is divisible only by itself and 1 are referred as
a) Reducible Polynomial
b) Irreducible Polynomial
c) Primitive Polynomial
d) Prime Polynomial.

a) $\left[\begin{array}{ll}1 & \alpha^{5} \\ \alpha & \alpha^{3}\end{array}\right]$
b) $\left[\begin{array}{ll}\alpha^{5} & 1 \\ \alpha^{3} & \alpha\end{array}\right]$
c) $\left[\begin{array}{ll}\alpha & \alpha^{5} \\ 1 & \alpha^{3}\end{array}\right]$
d) $\left[\begin{array}{cc}\alpha & 1 \\ \alpha^{5} & \alpha^{3}\end{array}\right]$.
ix) The minimal polynomial of α^{5} is
a) $x^{3}+x+1$
b) $x^{3}+1$
c) $x^{2}+1$
d) $x^{3}+x^{2}+1$.
x) In Block Code, syndrome is represented by
a) $r A^{T}$
b) $\quad r / A^{T}$
c) $r H$
d) $H^{2} r$.
xi) Consider the following code vectors :
$C_{1}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}\right] ; \quad C_{2}=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}\right] ; \quad C_{3}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right]$.
Value of $d\left(C_{1}, C_{3}\right)$ is
a) 2
b) 0
c) 3
d) 1 .
xii) $C=[000,001,101]$ is not a
a) cyclic
b) linear
c) Galoy
d) convolution.

Answer any three of the following. $3 \times 5=15$
2. Construct the group of integers under modulo- 6 addtition.
3. a) Determine whether the following sets form multiplicative groups :
i) The set of real numbers
ii) The set of positive real numbers
iii) The set of negative real numbers.
b) Show that the modulo-8 multiplication over $\{1,2,3,4,5,6,7$ \} fails to form multiplicative group. $3+2$
4. Construct a single-error-correcting binary BCH code over GF $\left(2^{3}\right)$.
5. Show that
a) $x^{4}+x^{2}+x+1=0$ modulo- $(x+1)$
b) $\quad \mathrm{R}_{\left(x^{2}+x+1\right)}\left[x^{5}+x^{3}+x^{2}+x+1\right]=x$ $3+2$
6. Draw an encoder for the $(2,1,3)$ convolutional code with generator sequences $g^{(1)}=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$ and $g^{(2)}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$.

7. a) Determine the generator sequences of the shift register as shown below :

Hence using convolution, determine the output sequences when the input sequences are
i) $\quad(1101 \ldots \ldots .$.$) ;$
ii) $\quad\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array}\right)$
b) A parity-check code has the parity-check matrix
$\mathrm{H}=\left[\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
i) Determine the generator matrix G
ii) Find the code word that begins with $101 \ldots \ldots$.
iii) Suppose that the received word is $\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0 .\end{array}$

Decode this received word.
$7+8$
8. a) For a $(6,3)$ systematic linear block code, the three parity-check bits C_{4}, C_{5} and C_{6} are formed from the following equations :

$$
\begin{aligned}
& C_{4}=d_{1}+d_{3} \\
& C_{5}=d_{1}+d_{2}+d_{3} \\
& C_{6}=d_{1}+d_{2}
\end{aligned}
$$

i) Write down the generator matrix G.
ii) Construct all possible code words.
iii) Suppose that the received word is 010111 .
b) Show that all error vectors that differ by a code have the same syndrome. $9+6$
9. a) Determine whether the following sets form additive groups :
i) $\quad \mathrm{S}_{1}=\{ \pm 1, \pm 2, \pm 3, \ldots \ldots .$.
ii) $S_{2}=\{0,1,2 \ldots \ldots$.
iii) $S_{3}=\{0, \pm 2, \pm 4, \ldots \ldots\}$
iv) $S_{4}=\{0, \pm 1, \pm 3, \ldots \ldots$.
b) Show that the set of vectors ($\left.\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right)$, ($\left.\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right)$,
 vector subspace of V_{5}.
c) Determine whether the vectors ($\left.\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 1\end{array}\right)$,
 independent. $5+5+5$
10. a) Construct a (7,4) cyclic code with $g(x)=1+x+x^{3}$.
i) Let the data word $\mathrm{d}=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$. Find the corresponding code word.
ii) Let the code word $\mathrm{c}=\left(\begin{array}{lllllll}1 & 1 & 0 & 0 & 1 & 0 & 1\end{array}\right)$. Find the corresponding data word.
b) Let $g(x)$ be the generator polynomial of a cyclic code C. Find a scheme for encoding the data sequence $\left(d_{0}, d_{1}, \ldots \ldots, d_{k-1}\right)$ into an (n, k) systematic code C.

a generator matrix G for C and find the code word for $d=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$. $5+5+5$
11. a) Given the $(7,3)$ linear code with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Determine a systematic form of G. Hence find a paritycheck matrix for the code.
b) Given that $C=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0\end{array} 11\right)$ is a code word of $(8,4)$ extended Hamming code with even parity. Determine the decoding decisions when C incurs the errors
i) $\quad e_{1}=\left(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
ii) $\quad e_{2}=\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array} 000\right)$
iii) $\quad e_{3}=\left(\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.
$7+8$

