Name :	(4)
Roll No.:	
Inviailator's Signature:	

CS/M.TECH (ECE-COMM)/SEM-2/MCE-205 D/2012

2012

ADVANCED ANTENNA AND WAVE PROPAGATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

Answer of the following to the point. $5 \times 2 = 10$

- 1. Define Gain and Directivity.
- 2. Define with diagram right handed circular polarized waves.
- 3. The radiation intensity of the main lobe of an aperture antenna in an infinite ground plane (XY) is given by $U(\theta, \phi) = \sin \theta$. Determine the beam solid angle.
- 4. What is the importance of G/T?
- 5. Distinguish between diffraction and scattering.

30250(M.Tech)

[Turn over

(Long Answer Type Questions)

Answer any *four* of the following. 4×1

- $4 \times 15 = 60$
- 6. a) The radiation intensity of an antenna is given by $U(\theta) = \cos^4 \theta, \ (0 \le \theta \le 90^\circ, \ 0^\circ \le \phi \le 360^\circ). \ \text{Find the}$ (a) half-power beam width HPBW, (b) first-null beam width FNBW. $7\frac{1}{2}$
 - b) For an infinitesimal dipole excited by a constant rf current I, determine the Radiation Intensity U, maximum value of U, Directivity, and the maximum Effective Aperture. $7\frac{1}{2}$
- 7. a) An omnidirectional antenna has uniform radiation in θ = 90° (horizontal) plane and fall to zero outside that plane. The pattern in constant in the ϕ = 0 (vertical) plane in the range 60° < θ < 120°. Find the Directivity.

 $7\frac{1}{2}$

- b) The mean radius of a small circular loop of constant current is $\lambda/10$. Find the radiation resistance and the ratio of its maximum effective aperture and physical area of the loop. $7\frac{1}{2}$
- 8. a) Design a 4 element linear binomial array on y-axis for uniform inter-element spacing of half wavelength. Plot the array pattern. Find FNBW.

- b) A 3 element Dolph-Chebyshev array possesses a sidelobe level 20 dB. The array has falf-wavelength spacing and the beam is steered towards broadside. Find the excitation coefficients, and the normalized array factor.
- 9. a) A 10 $\lambda x 5\lambda$ Uniform rectangular aperture is symmetrically located at the origin on xy-plane. Find the HPBW in two principal planes, the directivity, and the gain. $7\frac{1}{2}$
 - b) A parabolic reflector has dia = 10m, $\frac{f}{d}$ = 0.5, f = 3GHz, f = $\frac{f}{d}$ = 0.5, f = 3GHz, f = 0.5, f =
 - i) Aperture efficiency

ii)

- Directivity for maximum phase error $\Delta \phi_{\text{max}} = \frac{\pi}{2}$ radian. $7\frac{1}{2}$
- 10. Design a 50-200MHz LPDA for gain corresponds to scale factor 0.8 and space factor 0.15.
- 11. a) Design a rectangular microstrip antenna for 1.8 GHz with RT-duroid 5880 FR4 substrate having ε_r = 4.4, loss tangent = 0.001 and h = 1.6 mm.
 - b) In gain measurement of a horn antenna at 10 GHz, the TX and RX horns are indentical and placed at 5 m apart. The output of test horn is connected to an attenuator of 10 dB. Find the gain of the horn.

- 012 00 Utech
- 12. a) A radio link has a 100 watt transmitted power connected to an antenna of 2 m² effective aperture at 10GHz. The receiving antenna has an effective aperture of 0.5 m² and is located at a 30 km LOS distance from the transmitting antenna. Assuming lossless, matched antennas, find the power delivered to the receiver. 10
 - b) A plane wave at 20 MHz is transmitted to ionosphere and reflected from a height of 500 km from the flat earth. If the refractive index corresponding to maximum electron density is 0.5, determine the critical frequency.

5