Name :
 Roll No.

 Invigilator's Signature :
 CS/M.TECH (ECE-COMM)/SEM-2/MCE-205 D/2012
 2012
 ADVANCED ANTENNA AND WAVE PROPAGATION

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

Answer of the following to the point. $5 \times 2=10$

1. Define Gain and Directivity.
2. Define with diagram right handed circular polarized waves.
3. The radiation intensity of the main lobe of an aperture antenna in an infinite ground plane ($X Y$) is given by $U(\theta, \varphi)=\sin \theta$. Determine the beam solid angle.
4. What is the importance of G / T ?
5. Distinguish between diffraction and scattering.

Answer any four of the following. $4 \times 15=60$
6. a) The radiation intensity of an antenna is given by $U(\theta)=\cos ^{4} \theta,\left(0 \leq \theta \leq 90^{\circ}, 0^{\circ} \leq \varphi \leq 360^{\circ}\right)$. Find the (a) half-power beam width HPBW, (b) first-null beam width FNBW.
$7 \frac{1}{2}$
b) For an infinitesimal dipole excited by a constant rf current I, determine the Radiation Intensity U, maximum value of U, Directivity, and the maximum Effective Aperture. $7 \frac{1}{2}$
7. a) An omnidirectional antenna has uniform radiation in $\theta=90^{\circ}$ (horizontal) plane and fall to zero outside that plane. The pattern in constant in the $\varphi=0$ (vertical) plane in the range $60^{\circ}<\theta<120^{\circ}$. Find the Directivity.
b) The mean radius of a small circular loop of constant current is $\lambda / 10$. Find the radiation resistance and the ratio of its maximum effective aperture and physical area of the loop.
$7 \frac{1}{2}$
8. a) Design a 4 element linear binomial array on y-axis for uniform inter-element spacing of half wavelength. Plot the array pattern. Find FNBW.

b) A 3 element Dolph-Chebyshev
 sidelobe level - 20 dB . The array has falf-wavelength spacing and the beam is steered towards broadside. Find the excitation coefficients, and the normalized array factor.
9. a) A $10 \lambda x 5 \lambda$ Uniform rectangular aperture is symmetrically located at the origin on $x y$-plane. Find the HPBW in two principal planes, the directivity, and the gain.
b) A parabolic reflector has dia $=10 \mathrm{~m}, \frac{f}{\mathrm{~d}}=0.5, f=3 \mathrm{GHz}$,
feedpatternGf $\left(\theta^{\prime}\right)=6 \cos ^{2} \theta^{\prime}$. Find
i) Aperture efficiency
ii) Directivity
for maximum phase error $\Delta \phi_{\max }=\frac{\pi}{2}$ radian. $7 \frac{1}{2}$
10. Design a $50-200 \mathrm{MHz}$ LPDA for gain corresponds to scale factor 0.8 and space factor 0.15 .
11. a) Design a rectangular microstrip antenna for 1.8 GHz with RT-duroid 5880 FR4 substrate having $\varepsilon_{r}=4.4$, loss tangent $=0.001$ and $\mathrm{h}=1.6 \mathrm{~mm}$. 10
b) In gain measurement of a horn antenna at 10 GHz , the TX and RX horns are indentical and placed at 5 m apart. The output of test horn is connected to an attenuator of 10 dB . Find the gain of the horn.
12. a) A radio link has a 100 watt transmitted power connected to an antenna of $2 \mathrm{~m}^{2}$ effective aperture at 10GHz. The receiving antenna has an effective aperture of $0.5 \mathrm{~m}^{2}$ and is located at a 30 km LOS distance from the transmitting antenna. Assuming lossless, matched antennas, find the power delivered to the receiver. 10
b) A plane wave at 20 MHz is transmitted to ionosphere and reflected from a height of 500 km from the flat earth. If the refractive index corresponding to maximum electron density is 0.5 , determine the critical frequency.

