	Utech
Name:	
Roll No. :	To Annual O'S amenday and Explored
Invigilator's Signature :	

CS/M.TECH(LT)/SEM-1/MOLT-105/2011-12 2011

ADVANCED COORDINATION CHEMISTRY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *seven* questions. $7 \times 10 = 70$


1. Mention the following statements *right* or *wrong*:

 $10 \times 1 = 10$

- i) Tris (acetylacetonato) chromium (III) is a cationic complex.
- ii) Tris (8-quinolinato) Iron (III) is an anionic complex.
- iii) Hexaaminecobalt (III) chloride is a nonionic complex.
- iv) M—ONO, Nitro ligand complexed with Metal Ion.
- v) CO (II) Cl₂ is a reducing agent.
- vi) Cr (II) ion is a stable ion.
- vii) 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 4d < ... is right ascending order for electron accommodation in atoms.

40275 [Turn over

CS/M.TECH(LT)/SEM-1/MOLT-105/2011-12

- viii) The energy levels for p^2 electronic configuration $^{3}p < ^{1}d < ^{1}s$.
- Cu (I) ion is a d^9 ion.
- Example of d^4 ion is V(III) ion. x)
- 2. Clarify your answer for each of the aforementioned corrects $10 \times 1 = 10$ statements.
- 3. Explain the following terms:

10

- **LFER** i)
- ii) LFSE
- LCAO combination of atomic orbitals
- Russell-Saunders coupling iv)
- Jahn-Teller distortion of octahedral complexes. v)
- Define outer inner orbital complexes with example. The 4. lability of outer orbital complexes decreases in the following order:

$$AlF_6^{3-} > SiF_6^{2-} > PF_6^{-} > SF_6$$

Give reasons of your answer.

4 + 6

V(II) ion and Cr (III) ion — both being $3d^3$ ion, they should 5. exhibit the similar complex properties. But it is found that the complexes of H₂O, F⁻, Cl⁻, SCN⁻, NH₃, CN⁻ etc. all are inert whereas all the complexes of V(II) ion are labile but $V(CN)_{6}^{4-}$ is inert. Explain this statement. 10

40275

CS/M.TECH(LT)/SEM-1/MOLT-105/2011-12

- 6. Define Lability and Inertness of complexes. Explain why $CO(NH_3)_6^{3+}$ is unstable but inert, whereas $Ni(CN)_4^{2-}$ is stable but labile.
- 7. a) Discuss the reasons of colour formation in transition metal compounds.
 - b) How does it differ from organic coloured compounds?

6 + 4

- 8. Tanning of hides and skins with basic chrome compounds is thermodynamic / kinetic property of the same metal. Discuss with salient reasons.
- 9. It is generally found that $3d^{1}$ to $3d^{4}$ ions have the propensity to form octahedral complexes whereas $3d^{0}$ ions or non-transition metal ions tend to form only tetrahedral structure compounds; simultaneously from $3d^{6}$ to $3d^{9}$ ions behave to form more square planar complexes among many of the ligand geometry. Narrate your answer with your own reasons.
