Name:	A
Roll No.:	
Inviailator's Signature :	

CS/M.Tech (IT)/SEM-3/PGIT-302A/2012-13

2012 ADVANCED IMAGING TECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

1. Answer any *five* of the following.

 $5 \times 5 = 25$

a) What would be the effect on the histogram for the following 4 bit gray scale image segment if we set to zero in first two bit planes?

> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b) Define unsharp masking and high boost filtering techniques of an image in spatial domain.

40139 [Turn over

CS/M.Tech (IT)/SEM-3/PGIT-302A/2012-13

c) Determine Discrete Fourier transformation of the following image segment:

0	1	2	1
1	2	3	2
2	3	4	3
1	2	3	2

- d) What is meant by image enhancement by mask processing? Discuss any one method in it.
- e) Define digital image model mathematically. What is the difference between sampling and quantization?
- f) Define Fourier spectrum, phase angle and power spectrum of a digital image.
- g) Show that subtracting the Laplacian from an image is proportional to unsharp masking.

GROUP - B

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

2. a) Define different types of adjacency between pixels.

Consider the following 6×7 binary image segment, some of the pixels being highlighted:

0	1	0	0	1(e)	0	1(a)
0	0	0	1	1	0	1
1	1	1	0	1	1	1
0	1	1	1(d)	0	0	0
1	1	1(<i>c</i>)	0	1	0	0
(b)1	1	1	0	0	0	1

Let $V = \{1\}$ be the set of gray-level values used to define adjacency between pixels.

- b) Determine whether the pixels \mathbf{c} and \mathbf{d} are 4-adjacent, 8-adjacent and m-adjacent with explanation.
- c) Find the 8-adjacent and *m*-adjacent paths if exists between the pixels **a** and **b**.
- d) Find the city block (D_4) and chessboard (D_8) distances between the pixels ${\boldsymbol a}$ and ${\boldsymbol b}$.
- e) Define connectivity between pixels. Determine whether the pixels **b** and **e** are connected or not. Explain why.

$$3 + 3 + 4 + 2 + 3$$

- 3. a) What is meant by image enhancement by point processing? Discuss any two methods in it.
 - b) Perform histogram stretching so that the new image has a dynamic range of [0,7]:

Gray	0	1	2	3	4	5	6	7
level								
Number of	0	20	30	40	30	10	20	0
pixels								

c) Find the histogram equalized image of the following 3-bit image segment :

0 1 2 3

0 4 3 4

1 3 4 5

1 3 5 7

4 6 1 6

4 + 5 + 6

CS/M.Tech (IT)/SEM-3/PGIT-302A/2012-13

- 4. a) What is low-pass filter in frequency domain? Discuss any one low-pass filtering method in frequency domain.
 - b) Explain why the discrete histogram equalization techniques do not, in general, yield a flat histogram.
 - c) Suppose that a flat area with centre at (x_0, y_0) is illuminated by a light source with intensity distribution

$$i(x, y) = Ke^{-[(x-x_0)^2 + (y-y_0)^2]}$$

Assume for simplicity that the reflectance of the area is constant and equal to 1.0, and let K = 255. If the resulting image is digitized with m bits of intensity resolution, and the eye can detect an abrupt change of eight shades of intensity between adjacent pixels, what value of m will cause visible false contouring? 4 + 5 + 6

- 5. a) Write an algorithm for converting a gray scale image to binary.
 - b) What is sobel operator? Explain with an example.
 - c) Derive the expression for image averaging. Discuss the effect of the following image by taking 3×3 window sizes:

3 + 5 + 7

- 6. a) Explain Euclidian distance, city block distance and chessboard distance with examples.
 - b) Derive the expression for Laplacian operator in 2-dimension. Also show that Laplacian is linear operator.
 - c) What do you mean by digital image processing?

 Discuss the different application areas of digital image processing.

 5 + 6 + 4