

CS/M.Tech (IT)/SEM-3/PGIT-302A/2012-13

2012

ADVANCED IMAGING TECHNOLOGY

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

1. Answer any five of the following.
a) What would be the effect on the histogram for the following 4 bit gray scale image segment if we set to zero in first two bit planes ?

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

b) Define unsharp masking and high boost filtering techniques of an image in spatial domain.
c) Determine Discrete Fourier transformation of the following image segment :

0	1	2	1
1	2	3	2
2	3	4	3
1	2	3	2

d) What is meant by image enhancement by mask processing ? Discuss any one method in it.
e) Define digital image model mathematically. What is the difference between sampling and quantization ?
f) Define Fourier spectrum, phase angle and power spectrum of a digital image.
g) Show that subtracting the Laplacian from an image is proportional to unsharp masking.

GROUP - B

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
2. a) Define different types of adjacency between pixels.

Consider the following 6×7 binary image segment, some of the pixels being highlighted :

0	1	0	0	$1(e)$	0	$1(a)$
0	0	0	1	1	0	1
1	1	1	0	1	1	1
0	1	1	$1(d)$	0	0	0
1	1	$1(c)$	0	1	0	0
$(b) 1$	1	1	0	0	0	1

Let $\boldsymbol{V}=\{1\}$ be the set of gray-level values used to define adjacency between pixels.
b) Determine whether the pixels \mathbf{c} and \mathbf{d} are 4 -adjacent, 8-adjacent and m-adjacent with explanationvomesmin
c) Find the 8 -adjacent and m-adjacent paths if exists between the pixels a and \mathbf{b}.
d) Find the city block $\left(\mathrm{D}_{4}\right)$ and chessboard $\left(\mathrm{D}_{8}\right)$ distances between the pixels a and \mathbf{b}.
e) Define connectivity between pixels. Determine whether the pixels \mathbf{b} and \mathbf{e} are connected or not. Explain why.

$$
3+3+4+2+3
$$

3. a) What is meant by image enhancement by point processing ? Discuss any two methods in it.
b) Perform histogram stretching so that the new image has a dynamic range of $[0,7]$:

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	20	30	40	30	10	20	0

c) Find the histogram equalized image of the following 3-bit image segment :

0	1	2	3
0	4	3	4
1	3	4	5
1	3	5	7
4	6	1	6

$$
4+5+6
$$

4. a) What is low-pass filter in frequency domain padiscuss any one low-pass filtering method in frequency domain.
b) Explain why the discrete histogram equalization techniques do not, in general, yield a flat histogram.
c) Suppose that a flat area with centre at $\left(x_{0}, y_{0}\right)$ is illuminated by a light source with intensity distribution

$$
i(x, y)=K e^{-\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]}
$$

Assume for simplicity that the reflectance of the area is constant and equal to 1.0 , and let $\mathrm{K}=255$. If the resulting image is digitized with m bits of intensity resolution, and the eye can detect an abrupt change of eight shades of intensity between adjacent pixels, what value of m will cause visible false contouring ? $4+5+6$
5. a) Write an algorithm for converting a gray scale image to binary.
b) What is sobel operator ? Explain with an example.
c) Derive the expression for image averaging. Discuss the effect of the following image by taking 3×3 window sizes :

3	1	2	3
4	4	3	4
10	3	20	5
1	3	5	7
4	6	1	6

$$
3+5+7
$$

6. a) Explain Euclidian distance, city block distance and chessboard distance with examples.
b) Derive the expression for Laplacian operator in 2-dimension. Also show that Laplacian is linear operator.
c) What do you mean by digital image processing ? Discuss the different application areas of digital image processing.
