

CS/M.TECH(IT)/SEM-1/PGIT-101/2011-12

2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Choose the correct alternatives for any fourteen of the following: $\quad 14 \times 1=14$
i) The rank of a null matrix of order 2011×2011 is
a) 2011
b) 4022
c) 0
d) none of these.
ii) 0 is a eigenvalue of a
a) singular matrix
b) non-singular matrix
c) orthogonal matrix
d) none of these.
iii) Every homogeneous system of equations is always consistent.
a) True
b) False.

a) 0
b) 2011
c) 2012
d) 4023 .
v) The logical equivalence statement of the following compound proposition $\sim(p \vee q)$
a) $\quad \sim(p \wedge q)$
b) $\quad \sim p \vee q$
c) $\quad \sim p \wedge \sim q$
d) none of these.
vi) Which of the following is not a proposition ?
a) Every differential function is continuous
b) $2012>2011$
c) What are you doing ?
d) None of these.
vii) If $f(z)=u(x, y)+i v(x, y)$ is analytic, then $f^{\prime}(z)=$
a) $\frac{\partial u}{\partial x}-i \frac{\partial v}{\partial x}$
b) $\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}$
c) $\frac{\partial v}{\partial y}-i \frac{\partial v}{\partial x}$
d) none of these.
viii) If $u(x, y)=2 x-x^{2}+k y^{2}$ is harmonic, then k should be
a) 1
b) 2
c) 3
d) 0 .

a) $2 \pi i$
b) $3 \pi i$
c) 4
d) -4 .
x) The function $|z|^{2}$ is analytic at any point.
a) True
b) False.
xi) $z=0$ for the function $f(z)=z e^{1 / z^{2}}$ is
a) Removable singularity b) Pole
c) Essential singularity
d) none of these.
xii) The analytic function whose imaginary part is $e^{x} \sin y$ is
a) $e^{i z}$
b) e^{-z}
c) e^{z}
d) none of these.
xiii) Value of $\int_{C}\left(\frac{2}{z}+\frac{3}{z^{2}}\right) \mathrm{d} z, C$ being a path enclosing the origin is
a) $6 \pi i$
b) $4 \pi i$
c) $2 \pi i$
d) 0 .
xiv) $2 \pi \delta\left(w-w_{0}\right)$ is the Fourier transform of

a) $e^{j \omega_{0} t}$
b) $\cos w_{0} t$
c) $\sin w_{0} t$
d) none of these.
xv) Representation of an arbitrary function over the entire interval $(-\infty, \infty)$ is called
a) Fourier series
b) Fourier transform.
xvi) If a function f is even, all the Fourier coefficients a_{n} for n $=0,1,2, \ldots$ are zero; if f is odd, all Fourier coefficients b_{n} for $n=0,1,2, \ldots$ are zero.
a) True
b) False.
2. a) Find the eigenvalues of the following matrix $A=\left(\begin{array}{lll}-3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2\end{array}\right)$ also find the eigenvectors corresponding to eigenvalue $\lambda=-2$.
b) Show that if A is a triangular matrix, the eigenvalues are the diagonal entries.
c) Define rank of a matrix and find the rank of the following matrix :

$$
A=\left(\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right) \quad 6+4+4
$$

b) Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology.
c) What is the truth value of the following statement if the universe of discourse of variable m, n are all integers :

$$
\forall n \exists m\left(n^{2}<m\right)
$$

d) Using truth table show that the following statements are logically equivalent :
i) $P V(P \wedge Q)$ and P
ii) $P \rightarrow Q$ and $\sim P \vee Q \quad 5+3+3+3$
4. a) Show that the sum of all eigenvalues of a square matrix is trace of the matrix.
b) Prove that the function $f(z)=u+i v$ where
$f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0$
is continuous and that Cauchy-Reimann equations are satisfied at the origin, yet $f^{\prime}(z)$ does not exist there.

$$
7+7
$$

5. a) If $f(z)$ is analytic, prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

b) Find the Taylor's and Laurent's series which represent the function $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ when
i) $|z|<2$
ii) $2<|z|<3$
iii) $|z|>3$

$$
7+7
$$

6. a) Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} \mathrm{~d} z$, if C is the circle $|z|=3$.
b) Using the contour integration show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}=\frac{2 \pi}{3} .
$$

c) Find the inverse Z-transform of $F(z)=\frac{z^{3}-20 z}{(z-2)^{3}(z-4)}$.

$$
5+5+4
$$

7. a) $f(x)=\pi^{2}-x^{2}$ for $x €(-\pi, \pi)$. By Fourier series show that $f(x)=\frac{2 \pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{-4}{n^{2}}(-1)^{n} \cos n x$.
b) Mathematically prove that Fourier transform of a function $f(t)$ is given by $F(w)=\int_{-\infty}^{\infty} f(t) e^{-j w t} \mathrm{~d} t$.

$$
7+7
$$

8. a) Explain probability as relative frequency ofoccurrence.
b) What do you mean by mutually exclusive events? ?
c) The set of all possible outcomes of an event is defined by a sample space S. Two events A and B occurring in S are related in probability space by the following 3 axioms.
i) $\quad P(S)=1$
ii) $0 \leq P(A) \leq 1 \& 0 \leq P(B) \leq 1$
iii) Probability of any of A or B occurring $P(A \cup B)=P(A)+P(B)$ if A and B are mutually exclusive.

Explain the above using Venn diagram. Show using set theory how axiom (iii) is to be modified if A and B are not mutually exclusive and hence find probability of A and B jointly occurring for $P(A)=0 \cdot 2, P(B)=0.4$ and $P(A \cup B)=0.5$. Also find the probability that none of A or B will occur. $4+2+8$
= $=$ = $=$ = $=$ = $===$

