	Utech \
Name:	
Roll No.:	To State of Executings 2nd Explorer
Invigilator's Signature :	

CS/M.Tech(IEM)/SEM-2/IEM-202/2011 2011

QUALITY ENGINEERING & MANAGEMENT

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

- a) What are meant by Six Sigma and value enrichment?
 Do you agree that value can truly be enriched through the practice of Six Sigma?
 - b) Six Sigma methodology needs the use of DMAIC.
 Elaborately discuss DMAIC and explain each of the elements.
- a) Illustrate 'Quality Function Deployment' Model using an example.
 - b) Elucidate FMEA and its usefulness in industry. 7

30454 (M.Tech)

[Turn over

CS/M.Tech(IEM)/SEM-2/IEM-202/2011

- 3. a) Explain the terms 'Treatment condition', 'Design Matrix and 'Degree of Freedom'.
 - b) Determine minimum number of 'Treatment conditions' reguired for the following experiment: 5
 - 5 Factors A, B, C, D, E
 - 2 Interactions AE, BC and CD
 - 2 Levels of each factor.
- a) What are the benefits of ISO registration? Describe the
 ISO 9000 family of standards. Also discuss how over the
 years standards have been modified.
 - b) Briefly discuss incoming, inprocess and outgoing inspection methods in a manufacturing unit.
- 5. a) From the following data recorded during production inspection of an item determine,
 - i) Mean
 - ii) UCL
 - iii) LCL

iv) Plot the graph in \overline{X} and R charts showing whether the process is under control or not.

Sl. No. of	Individual Measurements			
Observations	I	II	III	
1	15.35	15.40	15.75	
2	15.25	15.50	15.60	
3	15.45	15.35	15.38	
4	15.41	15.42	15.74	
5	15.38	15.26	15.70	
6	15.26	15.61	15.73	
7	15.32	15.60	15.50	
8	15.30	15.54	15.55	
9	15.31	15.28	15.47	
10	15.71	15.39	15.36	

The values of factors A_2 , D_3 and D_4 for three items observation per draw are 1.023, 0 and 2.575 respectively.

- b) What is the difference between 'Attribute' and 'Variable'with respect to quality control charts.
- 6. Following table compiles the data of a chemical process for reaching your conclusion :

Level	Factor :	Temp.	Catalyst Grade	Reaction Time
1		75 cal	4	50 secs
2		90 cal	6	40 secs

CS/M.Tech(IEM)/SEM-2/IEM-202/2011

Orthogonal Array is given below:

Treatment	Melt	Melt Flow	Pressing Time	Respouse
	Temp.	rtow	Tune	
1	1	1	1	16
2	2	1	1	18
3	1	2	1	24
4	2	2	1	26
5	1	1	2	20
6	2	1	2	20
7	1	2	2	22
8	2	2	2	30

7 a) Twenty samples of size 100 units each were collected in a high pressure valve manufacturing unit over a period of ten days. The number of defective components found in the samples are presented

below:

$$6, \quad 7, \quad 4, \quad 9, \quad 5, \quad \ \, 4, \quad 6, \quad 10, \quad 3, \quad 4$$

Prepare the stable fraction defective p-control chart from the abode data.

- b) What type of control chart should be used for multiple types of defects in each unit of a product in a foundry? Elucidate the method of determining the mean and control limits in this respect.
- 8. Write short notes on any two of the following:

7 + 7

- a) Affinity diagram and interrelationship diagram
- b) Acceptance sampling and OC curve
- c) Quality circle
- d) Kaizen in TQM
- e) Cost of Quality
- f) Process capability and zero defect.