	Utech
Name:	
Roll No.:	A dynamic (y' Exemple prod Explored
Invigilator's Signature :	

CS/M.Tech(GET)/SEM-1/GTE-113/2011-12 2011

FLOW THROUGH POROUS MEDIA

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$ (The questions are of equal value)

- a) Explain the factor on which capillary rise in soil depend.
 Derive the expression connecting the capillary rise and surface tension.
 - b) Describe the domain of validity of Darcy's law in flow problems in civil engineering.
- 2. Write short notes on the following:
 - a) Bottleneck effect
 - b) Application area of fluid flow in porous medium.

41179 [Turn over

CS/M.Tech(GET)/SEM-1/GTE-113/2011-12

- c) Various expressions for coefficient of permeability of soils
- d) Various entrance and emergence conditions of line seepage.
- 3. Describe the soil moisture-suction relationship using Fayez's relation. Plot variation of suction with water content varying between 20% and 70% for different soils.
- 4. State the assumptions in deriving Laplace's Equation for steady state flow of fluid through saturation porous medium and hence develop the governing equation.
- 5. a) Prove that flow lines intersects the equipotential line orthogonally.
 - b) State with reference to sketches, different boundary conditions which exist for the earth dam under steady state seepage.
- 6. Explain any two methods of solving Laplace's Equation for flow through saturated porous medium.

41179 2

- 7. Develop expression for top flow line in earth dam theoretically and also graphically by Cassegrande's method.

 What are the roles of toe filter in this respect?
- 8. Explain the method of finding discharge through an earth dam with $K_x = 9 \propto 10^{-3}$ cm/sec and $K_z = 2 \propto 10^{-3}$ cm/sec.

41179 3 [Turn over