

CS/M.TECH(EIE)/SEM-1/EIEM-101/2011-12

2011

ADVANCED ELECTRONICS CIRCUITS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $\quad 5 \times 14=70$

1. a) Using MOS (both N-channel \& P-channel) draw the equivalent of active resistors. Find out the expression for current \& channel conductance. Draw the small signal model. $3+4+2$
b) The MOSFETs (in the following figure) are used for voltage division. Find W / L ratio for both the MOSFETs that give V_{0} of 1 V , if $V_{D D}=+5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}$ and $I=100 \mu \mathrm{~A}$. Assume that $V_{T N}=0.75 \mathrm{~V}, V_{T P}=-0.75 \mathrm{~V}$, $K_{N}^{\prime}=2.4 \times 10^{-5} \mathrm{~A} / \mathrm{V}^{2}, K_{P}^{\prime}=0.8 \times 10^{-5} \mathrm{~A} / \mathrm{V}^{2}$.

2. a) Draw the ckt for differential amplifier using CMOS. Hence, find the value of $A_{v d s}$.

b) Draw the small signal for two stage operational amplifier using BJT.
3. a) Why constant current source biasing is used in I.C. design ? Analyse the Widlar current source and obtain expressions for
i) output current and
ii) output resistance of this source. $2+6$
b)

The above two ckts are for generating a constant current $I_{0}=10 \mu \mathrm{~A}$ which operate from a 10 V supply. Determine the value of all resistors. Assume $V_{T}=0.25 \mathrm{~V}$.

b) What is meant by transistor sizing and how is it done ? TWO MOSFETs having aspect ratio of $(W / L)_{1}$ and $(W / L)_{2}$ are connected in series. Determine the equivalent aspect ratio of this series combination. $3+2$
5. a) Draw an 8 -bit voltage scaling D / A converter and explain its operation with the $i / p-o / p$ characteristic curve.

$$
2+5+2
$$

b) Find the accuracy requirement for a resistor string consisting of N equal segments as a function of the number of bits N. If the relative resistor accuracy is 5%, what is the largest no. of bits that can be resolved to within ± 0.5 LSB ?
6. a) Explain with the help of circuit diagram the CMOS implementation of a clocked S.R. flip-flop.
b) Using two-phase non-overlapping clock implement D-flip-flop.
7. a) Explain the importance of propagation delay and power dissipation in the logic circuit design. Draw the circuit diagram of a CMOS inverter and with reference to its voltage transfer characteristic obtain the matching condition.

$$
3+2+5
$$

b) What are the advantages that result from matching ? 4
8. For the following state diagram design a clocked RLA FSM where x is the i / p and $Y \& Z$ are the o / p 's.

9. Write short notes on any two of the following :
a) IC fabrication process
b) Bi CMOS inverter
c) Charge distribution converter
d) Current mirror.

