

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 which is compulsory and any four from the remaining.
$5 \times 14=70$

1. Answer the following questions in few lines/word: $7 \times 2$
a) Why is it necessary to suppress the field immediately after disconnection of faulty alternator from the system?
b) Why are voltage differential protection of bus bars superior to circulating current protection?
c) What is pole stipping phenomenon in case of an alternator?
d) What is blinder and what is its function?
e) What is the principle of out of step blocking relay?
f) Why directional feature provided for impedance relay cannot be used for reactance relay?
g) What is field suppression ?
2. a) What is the effect of prolonged unbalance fault on a generator ? Discuss the protection scheme used to cope with the effect.

42
b) A three-phase $50 \mathrm{MVA}, 11 \mathrm{kV}$ star connected alternator has a synchronous reactance of $2 \cdot 0$ ohm per phase and resistance of 0.70 ohm per phase. It is being protected by Merz-Price balanced current system. Determine what portionn of the winding remains unprotected if the neutral of the alternator is earthed through a resistance of 5 ohm . Assume that the relay operates when the out of balance current exceeds $25 \%$ of the load current. 7
3. a) The system shown in figure is fed by two generators $G_{1}$ and $G_{2} ; G_{1}$ at the bus $A$ and $G_{2}$ at $70 \%$ distance from $A$ in section $A B$. The currents $I_{A}$ and $I_{B}$ supplied by them respectively are equal. The reactance of the transformer is $10 \%$. The line voltages and impedances are shown in figure. Find the setting for the impedance relays for first, second and third zones adjusting the first zone to reach $80 \%$, second zone to reach $50 \%$. CTs and PTs have ratios $400 / 5 \mathrm{~V}$ and $166000 / 110 \mathrm{~V}$ respectively. 10
b) Draw impedance, reactance and MHO characteristies to protect the 100 per cent of the line having $(2 \cdot 5+j 6)$ ohm impedance. A fault may occur at any point on the line through arc resistance of 2 ohm. Determine the maximum percentage of the line section which can be protected by each type of relay.
4. a) What will happen to a generator if there is -
i) sudden loss of excitation ?
ii) sudden failure of prime-mover?
iii) loss of load?

Discuss in brief the protection schemes that are needed to cope with the effect. $3+3+3$
b) What type of protection scheme is used for a generator rotor earth fault?5
5. a) Give the differences between 'protective' and 'measuring' current transformers. 3
b) Give the basic principle of static distance relay and compare it with that of electromagnetic distance relay.
c) Show with a simple diagram, how a static impedance relay can be realised by amplitude comparator.5
6. a) Describe with block diagram the principle of operation of a microprocessor based harmonic restraint percentage differential relay scheme for protection of a power transformer.
b) Why is harmonic restraint required ?
7. a) Explain briefly the process of current chopping in $\mathrm{SF}_{6}$ breakers.
b) Differentiate between type tests and routine tests. What different tests are carried out to prove the ability of circuit breaker ?
c) Give the principle of operation of a DC circuit breaker.
8. a) Explain what is meant by short circuit capacity of a bus or fault level of a bus.
b) Discuss the double bus bar arrangement of bus bar layout in a substation or a power station switchyard using single line diagram showing incoming, outgoing feeders and switchgears.

What are its merits over single bus bar system ?

