Name:	Uledh
Roll No. :	
Inviailator's Sianature :	

CS/M.TECH (EE)/SEM-2/MTEE-201/2010 2010

PROJECTION OF POWER SYSTEM AND DEVICES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 which is compulsory and any *four* from the remaining. $5 \times 14 = 70$

- 1. Answer the following questions in few lines/word : 7×2
 - a) Why is it necessary to suppress the field immediately after disconnection of faulty alternator from the system?
 - b) Why are voltage differential protection of bus bars superior to circulating current protection?
 - c) What is pole stipping phenomenon in case of an alternator?
 - d) What is blinder and what is its function?
 - e) What is the principle of out of step blocking relay?
 - f) Why directional feature provided for impedance relay cannot be used for reactance relay?
 - g) What is field suppression?

30316 (M.TECH)

[Turn over

- 2. a) What is the effect of prolonged unbalance fault on a generator? Discuss the protection scheme used to cope with the effect. 2+5
 - b) A three-phase 50 MVA, 11 kV star connected alternator has a synchronous reactance of 2·0 ohm per phase and resistance of 0·70 ohm per phase. It is being protected by Merz-Price balanced current system. Determine what portion of the winding remains unprotected if the neutral of the alternator is earthed through a resistance of 5 ohm. Assume that the relay operates when the out of balance current exceeds 25% of the load current.
- 3. a) The system shown in figure is fed by two generators G_1 and G_2 ; G_1 at the bus A and G_2 at 70% distance from A in section AB. The currents I_A and I_B supplied by them respectively are equal. The reactance of the transformer is 10%. The line voltages and impedances are shown in figure. Find the setting for the impedance relays for first, second and third zones adjusting the first zone to reach 80%, second zone to reach 50%. CTs and PTs have ratios 400/5 V and 166000/110 V respectively.

dia

- b) Draw impedance, reactance and MHO characteristics to protect the 100 per cent of the line having (2.5 + j6) ohm impedance. A fault may occur at any point on the line through arc resistance of 2 ohm. Determine the maximum percentage of the line section which can be protected by each type of relay.
- 4. a) What will happen to a generator if there is
 - i) sudden loss of excitation?
 - ii) sudden failure of prime-mover?
 - iii) loss of load?

Discuss in brief the protection schemes that are needed to cope with the effect. 3 + 3 + 3

- b) What type of protection scheme is used for a generator rotor earth fault?
- 5. a) Give the differences between 'protective' and 'measuring' current transformers.
 - b) Give the basic principle of static distance relay and compare it with that of electromagnetic distance relay.

c) Show with a simple diagram, how a static impedancerelay can be realised by amplitude comparator.5

30316 (M.TECH)

3

[Turn over

6

6. a)	Describe with block diagram the principle of operation
	of a microprocessor based harmonic restraint
	percentage differential relay scheme for protection of a
	power transformer. 11
b)	Why is harmonic restraint required?
7. a)	Explain briefly the process of current chopping in SF $_{\rm 6}$
	breakers. 4
b)	Differentiate between type tests and routine tests. What
	different tests are carried out to prove the ability of
	circuit breaker? 5
c)	Give the principle of operation of a DC circuit breaker.
	5
8. a)	Explain what is meant by short circuit capacity of a bus
	or fault level of a bus. 4
b)	Discuss the double bus bar arrangement of bus bar
	layout in a substation or a power station switchyard
	using single line diagram showing incoming, outgoing

30316 (M.TECH)

What are its merits over single bus bar system?

10

feeders and switchgears.