	Utech
Name:	
Roll No. :	A Design (of Executing 2nd Coolings)
Invigilator's Signature :	•••••

CS/M.TECH(EE)/SEM-2/MTEE-202/2010 2010

POWER SYSTEM NETWORKING & MANAGEMENT

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

1. Explain application of swing equation in the study of power system stability.

Determine the kinetic energy stored by a 50 MVA, 50 Hz two pole alternator with an inertia constant (H) of 5 kW sec per kVA. If the machine is running steadily at synchronous speed with a shaft input (minus rotational losses) of 65000 HP and when the electrical power developed suddenly changes from its normal value to a value of 40 MW, determine the acceleration or deceleration of the rotor. If the acceleration computed for the generator is constant for a period of 10 cycles, determine the change in torque angle in that period and the rpm at the end of the cycles.

30317 (M.TECH)

[Turn over

CS/M.TECH(EE)/SEM-2/MTEE-202/2010

- State and explain 'equal area criterion'. Discuss the application of equal area criterion for the system stability study when a short circuit on one of the parallel feeders takes place which is cleared after certain time.
- 3. What is load compensation? Discuss its objectives in power systems. What are the types of compensators? Write a brief note on any one type. 3 + 3 + 2 + 6
- 4. Draw complete block diagram model of LFC (load frequency controller) in case of isolated power system and explain.

Express the steady change in frequency for a sudden change in load demand (for free governor operation) in terms of gains of different parts and speed regulation of the governor.

7 + 7

5. Write the equation which shows the odq (Park's) transformation to rotor coordinates of the stator *abc* quantities of an alternator.

The terminal conditions of a synchronous generator are $V_a = 1 \angle 0^\circ$ and $I_a = 1 \angle 90^\circ$.

The generator parameters are $x_d=1.0$, $x_d'=0.2$, $x_q=0.6$ and r=0. Find δ , I_d , I_q , i_d , i_q , I_{ad} , I_{aq} , $|E_a|$, $|E_a|$ and PG.

CS/M.TECH(EE)/SEM-2/MTEE-202/2010

6. Two generators rated 200 MW and 400 MW are operating in parallel. The droop characteristics of their governors are 4% and 5% respectively from no load to full load. Assuming that the generators are operating at 50 Hz at no load, how would a load of 600 MW be shared between them? What will be the system frequency of this load? Assume free governor operation.

Repeat the problem if both governors have a droop of 4%.

Draw and explain the different parts of alternator voltage regulator scheme (AVR). 7+7

7. Write short notes on any two:

 2×7

- a) subsynchronous resonance
- b) FACTS devices
- c) SVC.