	Utech
Name:	(8)
Roll No.:	The Owner by Exercising and Explanat
Invigilator's Signature :	

CS/M.Tech(EE-OLD)/SEM-2/PEM-205B/2013 2013

NONLINEAR PHENOMENA IN SWITCHING SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

1. a) A dynamic system is given by the following:

$$\dot{x} = x - y$$

$$\dot{y} = x - xy$$

Find the fixed points and sketch the phase portraits.

2 + 5

b) A dynamical system is given by

$$\ddot{x} = (x^2 - \dot{x}^2 - 1)\dot{x} + x = 0$$

Draw the phase portrait and discuss about the dyanmics. 7

30004 (M.Tech)

[Turn over

CS/M.Tech(EE-OLD)/SEM-2/PEM-205B/2013

$$\ddot{x} - \mu \left(1 - x^2 \right) \dot{x} x = 0$$

- a) Show that, at certain condition, it has a limit cycle
- b) Sketch the phase portrait.
- c) Find the amplitude and frequency of the periodic orbit.

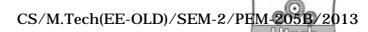
$$6 + 2 + 3 + 3$$

3. The Lorenz equations are gien by

$$\dot{x} = \sigma (y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = xy - bz$$


- a) Find the equilibrium points and comment on their existence.
- b) Check the stability of the equilibrium points.
- c) Discuss about the bifurcations occur as *r* is varied.

$$5 + 4 + 5$$

4. A dynamic system is represented by the map

$$x_{n+1} = ax_n (1 - x_n)$$

a) Find the equilibrium points and conditions of their existence.

- b) Show that the saddle node bifurcation occurs in the system and the conditions at which it occurs.
- c) Find the condition at which period doubling bifurcation occurs in and explain the reason. 3 + 4 + 7
- Write the normal form of piecewise linear map without discontinuity. Suggest different types of bifurcations occurred in the system.
- 6. a) Draw the schematic of a current controlled boost converter and write the dynamic equation.
 - b) Find the equilibrium points and stability for them.
 - c) Develop a piecewise linear map for the system. Hence show that the system is stable when $v_{\text{out}} = 2v_{\text{in}}$.
 - d) Predict the dynamics around the equilibrium for the change in the parameter value. 3 + 3 + 5 + 3
- 7. For a voltage mode control DC Drive
 - a) Draw the schematic and write the state equations.
 - b) Find the equilibrium points and discuss the dynamics of the system.
 - c) Predict the nonlinear phenomena occurred in the system due to variation of the parameters. 4 + 5 + 5

CS/M.Tech(EE-OLD)/SEM-2/PEM-205B/2013

- 8. a) Write the state equation for Permanent magnet synchronous Motor Drive.
 - b) Derive the equilibrium points and discuss the dynamics of the system with variation of parameters. 5 + 9
- 9. Write short notes on any *two* of the following : 2×7
 - a) Pitch fork Bifurcation
 - b) Homoclinic and heteroclinic orbit
 - c) Time delay control of chaos
 - d) Sliding model and switching surface control of chaos.
