Name :
Roll No. :

Invigilator's Signature : \qquad

CS / M.TECH (EE) / SEM-2 / CIM-203 / 2011
 2011
 DIGITAL CONTROL SYSTEMS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.
GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following: $7 \times 2=14$
i) The Z-transform of $X(s)=\frac{1-e^{-T s}}{s} \cdot \frac{1}{s+1}$ is
a) $\frac{\left(1-e^{-T}\right) Z^{-1}}{1-e^{-T} Z^{-1}}$
b) $\frac{\left(1-e^{-T}\right) Z^{-2}}{1-e^{-2 T} Z^{-1}}$
c) $\frac{\left(1-e^{-T}\right) Z^{-1}}{1-e^{-2 T} Z^{-1}}$
d) $\frac{\left(1-e^{-2 T}\right) Z^{-1}}{1-e^{-T} Z^{-1}}$.
ii) The static position error constant is
a) $K_{p}=\operatorname{Lim}_{z \rightarrow 1} G_{h 0} G(z)$
b) $\quad K_{p}=\operatorname{Lim}_{z \rightarrow 1} G_{h 0}(z) G(z)$
c) $\quad K_{p}=\stackrel{\operatorname{Lim}}{z \rightarrow \infty} G_{h 0} G(z)$
d) $\quad K_{p}=\operatorname{Lim}_{z \rightarrow 0} G_{h 0}(z) G(z)$

iii) If the S-plane poles of a 2 nd order (underdamped) transfer function with damping ratio and natural frequency $\omega_{n} \frac{r}{s}$ result in Z-plane poles at $Z=r \angle \theta$, then ϕ can be related to the Z-plane poles as
a) $\quad \phi=\frac{1}{T} \sqrt{l^{2}{ }_{n} r+\theta^{2}}$
b) $\phi=\frac{l_{n} r}{l_{n}^{2} r+\theta^{2}}$
c) $\phi=\frac{T}{-l_{n} r}$
d) $\phi=\frac{-l_{n} r}{\sqrt{l^{2}{ }_{n} r+\theta^{2}}}$.
iv) Consider the signal processing algorithm in the following figure :

The difference equation model of the algorithm is
a) $\quad y(k+2)+5 y(k+1)+3 y(k)=r(k+1)+2 r(k)$
b) $\quad y(k+1)+5 y(k+2)+3 y(k)=r(k+2)+2 r(k)$
c) $y(k+2)+5 y(k+2)+3 y(k)=r(k+2)+2 r(k)$
d) $y(k+1)+5 y(k+1)+3 y(k)=r(k+1)+2 r(k)$.
v) Given $H(s)=\frac{1}{s+1}, T=$ sampling period in sec. If trapezoidal approximation is used for integration then $H(Z)$ is
a) $\frac{T\left(1+Z^{-1}\right)}{(1+T)-(I-T) Z^{-1}}$
b) $\frac{1+Z^{-1}}{(1+T)-(I-T) Z^{-1}}$
c) $\frac{T(1-Z)}{(1+T)-(I-T) Z}$
d) $\frac{T / 2\left(1+Z^{-1}\right)}{(1+T / 2)-(I-T / 2) Z^{-1}}$.
vi) Consider the figure below.

The output $C(Z)$ is determined by
a) $\frac{G_{1} G_{2}(Z) R(Z)}{1+G_{1}(Z) G_{2}(Z) H(Z)}$
b) $\frac{G_{1}(Z) G_{2} R(Z)}{1+G_{1}(Z) G_{2} H(Z)}$
c) $\frac{G_{1}(Z) G_{2}(Z) R(Z)}{1+G_{1}(Z) G_{2} H(Z)}$
d) $\frac{G_{1} G_{2}(Z) R(Z)}{1+G_{1} G_{2}(Z) H(Z)}$.

CS / M.TECH (EE) / SEM-2 / CIM-203 / 2011® \odot_{\odot}
 Uliech

vii) Through the Z-transformation and W-transformation the primary strip of the left half of the S-plane is mapped
a) inside the unit circle in Z-plane
b) into the entire left half of W-plane
c) into the entire right half of W-plane
d) both (a) and (b).

GROUP - B
(Long Answer Type Questions)
2. a) Obtain the pulse transfer function of the system in figure.

Where $G(s)=\frac{1-e^{-T s}}{s} \cdot \frac{1}{s(s+1)}$.
b) Consider the systems shown in figure below. Obtain the pulse transfer function $\frac{Y(Z)}{X(Z)}$ for each of these two systems in figure.

Comment on the difference of the two transfer functions.
3. a) Derive the pulse transfer function of a digital PID controller.

b)

For the above system, the transfer function of the plant is assumed to be $G_{p}(s)=\frac{1}{s(s+1)}$ and the sampling period T is assumed to be 1 second. Find the closed loop transfer function, of the overall system in the figure. 4
4. a) Examine the stability of the following characteristic equation using Jury test.

$$
\begin{equation*}
P(Z)=Z^{4}-1 \cdot 2 Z^{3}+0 \cdot 07 Z^{2}+0 \cdot 3 Z-0 \cdot 08=0 . \tag{6}
\end{equation*}
$$

b) Consider the system shown in figure below.

Derive the static position error constant and static velocity error constant expressions for unit step input. 8
5. a) Obtain the state equation and the output equation for the system defined by
$\frac{Y(Z)}{U(Z)}=\frac{Z^{-1}+5 Z^{-2}}{1+4 Z^{-1}+3 Z^{-2}}$
Draw the block diagram for the system showing all state variables.

b) Obtain a state-space representation of the system shown in figure below. The sampling period is $T=1$ second. figure shows the system.

6. a) A digital process described by the transfer function $D_{2}(Z)$ uses a digital controller $D_{1}(Z)$ as shown in figure. Design the controller transmittance $D_{1}(Z)$ so that the closed loop system exhibits a deadbeat response and the error between the input and output is zero in the steady state when the system is operated by a unit step input.

5
b) A satellite control system has the following discrete model :
$\underline{x}(k+1)=\left[\begin{array}{cc}1 & 0 \cdot 12 \\ 0 & 1\end{array}\right] \underline{x}(k)+\left[\begin{array}{c}0 \cdot 004 \\ 0 \cdot 11\end{array}\right] u(k)$
$y(k)=\left[\begin{array}{ll}1 & 0\end{array}\right] \underline{x}(k)$
Where $x_{1}(k)$ and $x_{2}(k)$ are angular position and angular velocity respectively. A closed loop control system has to be designed using pole assignment technique with a control input $u(k)=-K \underline{x}(k)$, where K is the gain matrix. The desired closed-loop control pole locations are $(0 \cdot 8 \pm \mathrm{j} 0 \cdot 25)$. Determine the gain matrix and show how the feedback gains may be implemented.

7. A robot arm control system configuration is shown in figure. The open loop transfer function of the digital scheme is known to be $G(Z)=\frac{0 \cdot 022 Z+0 \cdot 01}{(Z-1)(Z-0 \cdot 84)}$.
Design a PI controller to meet the following performance specifications :
(i) $K v \geq 12$
(ii) Phase margin $\geq 55^{\circ}$.

14
8. a) Discuss the role of Integral Control by state augmentation in the state space design methodology. Draw a block diagram representation to show the Integral control structure for a digital control system employing full state feedback. State the significance of introducing a feed forward control gain in the presence of an Integrator control action.
b) Write a note on full order observer in the Z-domain. Comment on the error dynamics of the full order state observer.

