	Utech
Name:	
Roll No.:	Wy many and trader
Inviailator's Sianature :	

CS / M.TECH (EE) / SEM-2 / CIM-203 / 2011 2011

DIGITAL CONTROL SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $7 \times 2 = 14$
 - The *Z*-transform of $X(s) = \frac{1 e^{-Ts}}{s} \cdot \frac{1}{s+1}$ is
 - a) $\frac{(1-e^{-T})Z^{-1}}{1-e^{-T}Z^{-1}}$ b) $\frac{(1-e^{-T})Z^{-2}}{1-e^{-2T}Z^{-1}}$

 - c) $\frac{(1-e^{-T})Z^{-1}}{1-e^{-2T}Z^{-1}}$ d) $\frac{(1-e^{-2T})Z^{-1}}{1-e^{-T}Z^{-1}}$.
 - ii) The static position error constant is

 - a) $K_p = \frac{Lim}{z \to 1} G_{h0}G(z)$ b) $K_p = \frac{Lim}{z \to 1} G_{h0}(z) G(z)$

 - c) $K_p = \lim_{z \to \infty} G_{h0}G(z)$ d) $K_p = \lim_{z \to 0} G_{h0}(z)G(z)$

30059 (M.TECH)

[Turn over

If the S-plane poles of a 2nd order (underdamped) iii) transfer function with damping ratio of and natural frequency $\omega_n \frac{r}{s}$ result in Z-plane poles at $Z = r \angle \theta$, then ϕ can be related to the *Z*-plane poles as

a)
$$\phi = \frac{1}{T} \sqrt{l_n^2 r + \theta^2}$$

$$\phi = \frac{l_n r}{l_n^2 r + \theta^2}$$

c)
$$\phi = \frac{T}{-l_n r}$$

a)
$$\phi = \frac{1}{T} \sqrt{l_n^2 r + \theta^2}$$
 b) $\phi = \frac{l_n r}{l_n^2 r + \theta^2}$ c) $\phi = \frac{T}{-l_n r}$ d) $\phi = \frac{-l_n r}{\sqrt{l_n^2 r + \theta^2}}$.

Consider the signal processing algorithm in the iv) following figure:

The difference equation model of the algorithm is

a)
$$y(k+2)+5y(k+1)+3y(k)=r(k+1)+2r(k)$$

b)
$$y(k+1) + 5y(k+2) + 3y(k) = r(k+2) + 2r(k)$$

c)
$$y(k+2)+5y(k+2)+3y(k)=r(k+2)+2r(k)$$

d)
$$y(k+1) + 5y(k+1) + 3y(k) = r(k+1) + 2r(k)$$
.

Given $H(s) = \frac{1}{s+1}$, T = sampling period in sec. Ifv) trapezoidal approximation is used for integration then H(Z) is

a)
$$\frac{T(1+Z^{-1})}{(1+T)-(I-T)Z^{-1}}$$

b)
$$\frac{1+Z^{-1}}{(1+T)-(I-T)Z^{-1}}$$

c)
$$\frac{T(1-Z)}{(1+T)-(I-T)Z}$$

d)
$$\frac{T/2(1+Z^{-1})}{(1+T/2)-(I-T/2)Z^{-1}}$$
.

vi) Consider the figure below.

The output C(Z) is determined by

a)
$$\frac{G_1 G_2(Z) \, R \, (Z)}{1 + G_1(Z) G_2(Z) H(Z)} \qquad \text{b)} \qquad \frac{G_1(Z) \, G_2 R \, (Z)}{1 + G_1(Z) \, G_2 H(Z)}$$

b)
$$\frac{G_1(Z) G_2 R(Z)}{1 + G_1(Z) G_2 H(Z)}$$

c)
$$\frac{G_1(Z) G_2(Z) R(Z)}{1 + G_1(Z) G_2 H(Z)}$$
 d) $\frac{G_1 G_2(Z) R(Z)}{1 + G_1 G_2(Z) H(Z)}$.

d)
$$\frac{G_1G_2(Z) R(Z)}{1 + G_1G_2(Z)H(Z)}$$

- vii) Through the Z-transformation and W-transformation the primary strip of the left half of the S-plane is mapped
 - a) inside the unit circle in *Z*-plane
 - b) into the entire left half of W-plane
 - c) into the entire right half of W-plane
 - d) both (a) and (b).

GROUP - B

(Long Answer Type Questions)

2. a) Obtain the pulse transfer function of the system in figure.

Where
$$G(s) = \frac{1 - e^{-Ts}}{s} \cdot \frac{1}{s(s+1)}$$
.

b) Consider the systems shown in figure below. Obtain the pulse transfer function $\frac{Y(Z)}{X(Z)}$ for each of these two systems in figure.

Comment on the difference of the two transfer functions.

30059 (M.TECH)

3. a) Derive the pulse transfer function of a digital PID controller.

For the above system, the transfer function of the plant is assumed to be $G_p(s) = \frac{1}{s(s+1)}$ and the sampling

period T is assumed to be 1 second. Find the closed loop transfer function, of the overall system in the figure.

4. a) Examine the stability of the following characteristic equation using Jury test.

$$P(Z) = Z^4 - 1 \cdot 2Z^3 + 0 \cdot 07Z^2 + 0 \cdot 3Z - 0 \cdot 08 = 0.$$
 6

b) Consider the system shown in figure below.

Derive the static position error constant and static velocity error constant expressions for unit step input. 8

5. a) Obtain the state equation and the output equation for the system defined by

$$\frac{Y(Z)}{U(Z)} = \frac{Z^{-1} + 5Z^{-2}}{1 + 4Z^{-1} + 3Z^{-2}}$$

Draw the block diagram for the system showing all state variables.

b) Obtain a state-space representation of the system shown in figure below. The sampling period is T = 1 second. figure shows the system.

6

5

6. a) A digital process described by the transfer function $D_2(Z)$ uses a digital controller $D_1(Z)$ as shown in figure. Design the controller transmittance $D_1(Z)$ so that the closed loop system exhibits a deadbeat response and the error between the input and output is zero in the steady state when the system is operated by a unit step input.

b) A satellite control system has the following discrete model:

$$\underline{x}(k+1) = \begin{bmatrix} 1 & 0.12 \\ 0 & 1 \end{bmatrix} \underline{x}(k) + \begin{bmatrix} 0.004 \\ 0.11 \end{bmatrix} u(k)$$

$$y(k) = [1 \ 0] \ \underline{x}(k)$$

Where $x_1(k)$ and $x_2(k)$ are angular position and angular velocity respectively. A closed loop control system has to be designed using pole assignment technique with a control input $u(k) = -K \underline{x}(k)$, where K is the gain matrix. The desired closed-loop control pole locations are $(0 \cdot 8 \pm j \cdot 0 \cdot 25)$. Determine the gain matrix and show how the feedback gains may be implemented.

30059 (M.TECH)

7. A robot arm control system configuration is shown in figure. The open loop transfer function of the digital scheme is known to be $G(Z) = \frac{0.022Z + 0.01}{(Z-1)(Z-0.84)}$.

Design a PI controller to meet the following performance specifications:

- (i) $Kv \ge 12$
- (ii) Phase margin $\geq 55^{\circ}$.

14

- 8. a) Discuss the role of Integral Control by state augmentation in the state space design methodology. Draw a block diagram representation to show the Integral control structure for a digital control system employing full state feedback. State the significance of introducing a feed forward control gain in the presence of an Integrator control action.
 - b) Write a note on full order observer in the Z-domain. Comment on the error dynamics of the full order state observer.

=========