
 Name:
 Roll No.
 \qquad N
 viech Invigilator's Signature :
 \qquad
 CS/M.Tech(EE-OLD)/SEM-2 /EEP-206/2011 2011
 APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
[Graph sheet(s) will be supplied by the Institute.]
Answer any five questions.
$5 \times 14=70$

1. a) Reduce the quadratic form

$$
6 x^{2}+y^{2}+18 z^{2}-4 y z-12 z x
$$

to the normal form and find its rank, index and signature and hence determine its nature.
b) Find the absolutely smallest eigenvalue and the corresponding eigenvector of the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

correct to 2 decimal places using the power method.

$$
7+7
$$

2. a) A firm manufactures two products A and B on which the profits earned are Rs. 5 and Rs. 8 respectively. Eaeh product is prepared on two machines X and Y. The machine time (in minutes) required for these products on two machines and their availability are as shown below :

Machine	Product		Availability of machine						
	A	B	(minutes) per day	$	$		2	1	400
:---:	:---:	:---:	:---:						
X	4	1	600						
Y									

It is required to find the number of units of products A and B to be manufactured per day to get maximum profit. Formulate the problem as linear programming mathematical model and solve it graphically by isoprofit line method.
b) Prove that every extreme point of the convex set of all feasible solutions of the system $A x=b, x \geq 0$ corresponds to a basic feasible solution. $7+7$
3. a) What are the disadvantages of Big M method over two-phase method?
b) Use the two-phase simplex method to solve the following linear programming problem :

$$
\text { Maximize } Z=2 x_{1}+x_{2}+3 x_{3}
$$

subject to the constraints

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3} \geq 5 \\
& 2 x_{1}+3 x_{2}+4 x_{3}=12 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

4. Use the revised simplex method to solve the following linear programming problem :

Maximize $Z=5 x_{1}+3 x_{2}$
subject to the constraints

$$
\begin{align*}
& 3 x_{1}+8 x_{2} \leq 12 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \tag{14}
\end{align*}
$$

5. Use Wolfe's method to solve the quadratic programming problem :

Maximize $f(x)=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$
subject to the constraints

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6. a) Convert the following differential equation into an integral equation :

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\lambda x y=f(x)
$$

b) Using iterative method, solve

$$
y(x)=(5 x / 6)+(1 / 2) \int_{0}^{1} x t y(t) \mathrm{d} t
$$

CS / M.Tech(EE-OLD)/SEM-2 / EEP-206/2011

7. Solve the following integral equation and discuss all its possible cases :

$$
y(x)=f(x)+\lambda \int_{0}^{1}(1-3 x t) y(t) \mathrm{d} t
$$

8. A small maitenance project consists of the following jobs whose precedence relationships are given below :

Job	$1-2$	$1-3$	$2-3$	$2-5$	$3-4$	$3-6$	$4-5$	$4-6$	$5-6$	$6-7$
Duration (days)	15	15	3	5	8	12	1	14	3	14

a) Draw an arrow diagram representing the project.
b) Find the total float for each activity.
c) Find the critical path and the total project duration.

