	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (EE)/SEM-2/MPS-201/2011 2011 ADVANCED CONTROL SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. 5

 $5 \times 14 = 70$

- 1. a) Define sensitivity of a control system. Discuss how sensitivity for parameter variations can be reduced by using feedback.
 - b) Show how the effects of disturbance signals can be reduced by the use of feedback.
 - c) Discuss briefly how the dynamic response depends on the location of poles of a system. 7 + 3 + 4
- 2. a) How can a non-linear spring be linearized?
 - b) Obtain the differential equation of the mechanical system shown in Figure-1. Draw the electrical analogous circuit based on force-current analogy.

30424 (M.Tech)

[Turn over

b) Find inverse z-transform of

$$F(z) = \frac{(1 - e^{-at})z}{(z - 1)(z - e^{-at})}$$
 6 + 8

- 4. a) Stepwise describe Liapunov's method for stability analysis in its simplest form.
 - b) A simple mass, spring and viscous friction is shown in Figure-2. Show that the system is stable.

Figure-2

8 + 6

- 5. a) Show that the describing function of a non-linear element is given by $K_N(x, \omega) = (Y_1(X) \angle \phi_1)$ when the input to the non-linearity is $x = X \sin(\omega t)$. All symbols carry usual significances.
 - b) Write down the output waveform showing idealized characteristics of non-linearity having dead zone and saturation with sinusoidal input. Hence find the corresponding describing function. Find also the describing function with saturation non-linearity. 6 + 8

6. a) A system is described by

$$\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$

Check the controllability and observability of the system.

- b) State the properties of state transition matrix.
- c) A system is represented by the state and output equation given below find the poles of the system.

$$\dot{X} = \begin{bmatrix} -3 & -2 \\ -1 & 1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$$
.

$$6 + 3 + 5$$

- 7. a) If F(z) = Z[e(t)] when e(t) is Laplace transformable, prove that $Z[e^{\pm at} * e(t)] = F[Ze^{\pm aT}]$.
 - b) Find the *Z*-transform of
 - i) e^{at}
 - ii) e^{-at}

iii)
$$e^{-at}\cos \beta t$$
.

7 + 7

30424 (M.Tech)

CS/M.Tech (EE)/SEM-2/MPS-201/2011

- 8. a) Explain the following :
 - i) Integral control action
 - ii) PID control action.
 - b) What are the steps in designing a control system ? 8 + 6

