	Uleah
Name :	
Roll No.:	A Agree (1/ Executing 2 and Explaint)
Invigilator's Signature :	

CS/M.Tech(EE)/SEM-1/CI-1.5.2/2009-10 2009

ELECTRONIC DEVICES & SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any *four* from the rest. $5 \times 14 = 70$

- 1. i) Why CMRR should be kept very high for operational amplifier?
 - ii) Explain slew rate for operational amplifier.
 - iii) Define *Q*-factor for a bandpass filter.
 - iv) What is reverse recovery time of a power thyristor?
 - v) Why is isolation required in the gate driver circuit of an IGBT?
 - vi) What is Signal to Noise and Distortion (SINAD)?
 - vii) What is the function of MODEM?
- $7 \propto 2$
- 2. a) Find out the amplitude and phase of the output signal from the following configuration of circuit.

 $V_{in} = 10 \sin \left(10^5 u t \right)$ volts

920557 [Turn over

CS/M.Tech(EE)/SEM-1/CI-1.5.2/2009-10

- b) Show the configuration of active notch filter. What is notch-out frequency of the filter?
- 3. a) For the circuit given below derive the relationship between $V_{\it in}$ and $V_{\it out}$. Also state how the circuit can be used as filter and indicate the type of the filter.

$$V_{in} = V_m \sin \omega t$$

- b) Show the configuration of a bandpass filter. Define centre frequency and bandwidth of the same.
- 4. a) For the following amplifier derive the relationship between input and output.

b) For the following circuit show the output waveform.

$$v_i = 10 \sin 314 t \text{ volts}$$

5. a) The following specifications are given for a dual input balanced output differential amplifier:

$$R_{C}=2.2$$
 K, $R_{E}=4.7$ K, $R_{in_{1}}=R_{in_{2}}=50$ $\Omega.$

$$V_{cc} = -V_{EE} = 10 \text{ V}, \ \beta_{dc} = \beta_{ac} = 100, \ V_{BE} = 0.7 \text{ V}.$$

Determine (i) voltage gain (ii) R_{in_1} , R_{in_2} and R_o .

- b) Why is input impedance required to be high for operational amplifiers. Explain with diagram.
- 6. a) Define latching current and holding current for a thyristor. Which current is greater?

A thyristor with latching current of 50 mA is triggered with a 50 μ s pulse for the circuit shown below. Find out the max. value of *R* to ensure triggering.

CS/M.Tech(EE)/SEM-1/CI-1.5.2/2009-10

- b) State the conditions to commutate a thyristor. Also show the VI characteristics of a thyristor in the forward and reverse zone. Also show the same for a triac indicating difference between the two.
- 7. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2}$
 - a) Resolution of an A/D converter
 - b) Quantization error of an A/D converter
 - c) Signal-to-Noise Ratio (SNR) of an A/D converter
 - d) Sampling rate of an A/D converter
 - e) Aliasing of an A/D converter
 - f) Total harmonic distortion of A/D converter.

920557