Invigilator's Signature : \qquad

CS/M.TECH(EE)/SEM-1 /EMM-101/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions
 $5 \times 14=70$

1. a) Determine and graph the image of $|z-a|=a$ under the transformation $w=z{ }^{2}$.
b) Show that the transformation $w=\frac{5-4 z}{4 z-2} \quad$ transform the circle $|z|=1$ into a circle of radius unity in the w-plane and find he centre of the circle. $6+1$
2. a) Evaluate $\int|z|^{2} d z$ where c is the square with C
vartices at (0,0), (1,0), (1,1), (0,1).
4
b) Evaluate $\oint_{\mathrm{C}} \frac{1}{z^{2}+9} d z$ where c is $|z-3 i|=4$. 5
c) Prove that $\frac{1}{2 \pi i} \int_{C} \frac{e^{z t}}{z^{2}+1} d z=\sin t$,
where $t>0$ and c is the circle $|z|=\pi$.

CS/M.TECH(EE)/SEM-1/EMM-101/2011-12
3. a) Solve the following difference equation :

$$
y_{n+2}-5 y_{n+1}+6 y_{n}=n+2^{n} .
$$

b) Form the divided difference table of the following tabular values of a function $f(x)$ and find the interpolating polynomial.

x	-2	-1	0	1	2	3
$f(x)$	70	11	4	1	2	55

4. a) Solve the following system of equations, correct to 3 decimal places, by Newton-Rephson method with $(0,0)$ as initial app[roximation :
$x^{3}+y^{3}-6 x+3=0$
$x^{3}-y^{3}-6 y+2=0$.
b) By using LU decomposition method, solve the following system :
$2 x+y+z=3$
$x+3 x+z=-2$
$x+y+4 z=-6$.
5. a) Use Adams' predictor-corrector method to obtain the solution of the equation

$$
\frac{d y}{d x}=x^{2}+y^{2} \text { at } x=1 \cdot 4,
$$

given that $y(1)=0, y(1 \cdot 1)=0 \cdot 11072$, $y(1.2)=0.24631, y(1.3)=0.41357$.
b) Using Bender-Schmidt method find the values of $u(x, t)$ satisfying the parabolic equation \sim natemicin $u_{t}=4 u_{x x}$
subject to
boundary conditions $u(0, t)=0=u(8, t)$
and initial condition $(x, 0)=4 x-\frac{1}{2} x^{2}$
at the points $x=i$ where $i=0,1,2, \ldots \ldots, 7$ and $t=\frac{j}{8}$,
$j=0,1,2, \ldots \ldots 5$.
6. a) Find the curve c passing through two given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ such that the rotation of the curve c about x-axis generates a surface of revolution having minimum surface area.
b) Find the extremal of the following functional :
$\pi / 2$
$\int\left(y^{\prime 2}-y^{2}+2 x y\right) d y ; y(0)=0, y\left(\frac{\pi}{2}\right)=0 . \quad 7$ 0
7. a) Use Bellman's principle of optimality to minimize $z=y_{1}+y_{2}+\ldots .+y_{n}$, subject to the constraint: $y_{1} \cdot y_{2} \cdot \ldots \cdot y_{n}=d$.
b) Show that the system of equations:

$$
\begin{aligned}
& x+2 y-z=3 \\
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2 \\
& x-y+z=-1
\end{aligned}
$$

is consistent and solve it.
8. a) Let V and W be vector spaces over a field F and V is finite dimensional. If $T: V \rightarrow W$ be afinear mapping, then prove that
rank of $T+$ nullity of $T=\operatorname{dim} V$. 7
b) Let $\left\{\alpha_{1}=(1,1,1), \alpha_{2}=(0,1,1), \alpha_{3}=(0,0,1)\right.$ \} be a basis of the Euclidean space $V_{3}(R)$. Use Gram-Schmidt process of orthogonalisation to obtain an orthonormal basis from $\left\{\alpha_{i}\right\}$.

