	Utech
Name:	
Roll No.:	A Granty English and Explana
Invigilator's Signature :	

CS/M.Tech(EE)/SEM-1/MMA-101/2012-13 2012

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

 a) Write down fourth order Runge-Kutta formula for solving the differential equation

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$$
 3

- b) Determine the maximum and minimum values of the function $f(x) = 12x^5 45x^4 + 40x^3 + 5$.
- c) State the necessary and sufficient condition for optimization of multivariable objective function with equality consants.
- d) Evaluate $\oint_C \frac{2z}{z-4} dz$, where C: |z-1| = 2.
- e) Show that the vectors (1, 1, 0), (1, 1, 1) and (0, 1, -1) are linearly independent.

40560 [Turn over

CS/M.Tech(EE)/SEM-1/MMA-101/2012-13

2. a) Find the extrene points of the function

$$f(x, y) = x^3 + y^3 + 2x^2 + 4y^2 + 6.$$
 7

- b) Using Picard's method find a solution of $\frac{dy}{dx} = 1 + xy$ up to the third approximation when y(0) = 0.
- 3. a) Use Taylor series method to solve the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -xy, \quad y(0) = 1.$$

b) Apply Runge-Kutta method (fourth order) to find an approximate value of y when x = 0.2,

given that
$$\frac{dy}{dx} = x + y$$
, $y = 1$ when $x = 0$.

4. a) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the domain of the figure given by Gauss-Siedel method :

b) Find the extreme points of the function

$$f(x, y, z) = x + 2z + yz - x^2 - y^2 - z^2.$$
 7

40560 2

- 5. a) Define analystic function in a region R of the complex plane. If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is analystic function of z = x + iy, find f(z) in terms of z.
 - b) State a set of necessary conditions for a function f(z) = u(x, y) + iv(x, y) to be analytic in R. For the function defined by $f(z) = \sqrt{|xy|}$, show that

the Cauchy-Riemann equations are staisfied at (0, 0) but the function is not differentiable at that point. 2 + 5

6. a) Investigate for what values of λ and μ the following equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

- i) has no solution
- ii) have unique solution
- iii) have an inifinite number of solutions?
- b) If λ is an eigenvalue of a non-singular matrix A, then prove that λ^{-1} is the eigenvalue of A^{-1} . Hence find the eigenvalues of A^{-1} , where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}.$$

CS/M.Tech(EE)/SEM-1/MMA-101/2012-13

7. a) State Cauchy's residue theorem. Use this to evaluate $\int_C \frac{e^z}{(z^2 + \pi^2)^2} dz$, where *C* is the circle : |z| = 4.

2 + 5

- b) i) Expand f(z) = 1 / (z + 1) (z + 3) in Laurent's series valid for 0 < |z + 1| < 2.
 - ii) Find the residues of the following function at each pole : $\frac{ze^{z}}{(z-a)^{3}}$.

40560