Name:
 Roll No. :

 Invigilator's Signature :
 CS/M.TECH (EE)/SEM-1/PSM-101/2010-11
 2010-11
 ADVANCED CONTROL SYSTEM

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions $5 \times 14=70$

1. a) For the sampled-data control system shown in Fig. find the output $\mathrm{c}(\mathrm{k})$ for $\mathrm{r}(\mathrm{t})=$ unit step 7

b) Consider the sampled data system of Fig. Determine its characteristic equation in the z-domain and ascertain its stability via the bilinear transformation.

CS/M.TECH (EE)/SEM-1/PSM-101/2010-11
2. a) Block diagram representation of a linear time-invariant system is given in Fig. Check whether the system is completely observable.

7

b) A discrete-time system has the transfer function
$T(z)=\frac{4 z^{3}-12 z^{2}+13 z-7}{(z-1)^{2}(z-2)}$
Determine the state model of the system in
(i) Phase variable form
(ii) Jordan Camonical form.
3. a) State and prove Cayley Hamilton theorem.
b) Find $[\mathrm{SI}-\mathrm{A}]^{-1}$ using Leverrier Fedeev algorithm whose

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -2 & 0 \\
-2 & -3 & -1
\end{array}\right]
$$

4. a) The plant is given by $\dot{x}=\mathrm{Ax}+\mathrm{Bu}$ where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -5 & -6
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The system uses uses the state feedback control law $u=-K x$, Let us choose the desired closed loop poles at $S=-2+j 4, S=-2-j 4, S=-10$. Determine the state feedback gain.

7
b) Explain Lag. Lead, \& Lag-lead compensator.

7
5. a) Given plan

$$
\begin{aligned}
& \mathrm{Gp}(\mathrm{~s})=\frac{40}{2 s^{3}+10 s^{2}+82 s+10} \\
& \mathrm{H}(\mathrm{~s})=1
\end{aligned}
$$

Find and $\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}$ and transfer function of the PID controller, using Ziegler Nichols tuning. 7
b) Explain the effects of proportional, integral \& derivative control actions and system performance.
6. a) State the stability theorem of Liapunov for non-linear system.
b) Consider the dynamics of the system represented by

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

i) Formulate the Liapunovs function to test the Asymptotic stability. 5
ii) Determine the asymptotic stability by using the Liapunov's second method.

CS/M.TECH (EE)/SEM-1/PSM-101/2010-11
7. a) Is the system represented by $7=\mathrm{mx}+$ ea linear system ? If not how can it be linearized? $1+3$
b) Using method of isocline draw the phase trojectory for the system $\ddot{\theta}+\theta=0$ 5
c) Derive the describing function for "Dead-zone
nonlinearity".

