	<u>Utech</u>
Name :	
Roll No.:	To Plante Of Samulage 2nd Explant
Inviailator's Signature:	

CS/M.TECH (EE)/SEM-1/PSM-101/2010-11

2010-11 ADVANCED CONTROL SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions $5 \times 14 = 70$

1. a) For the sampled-data control system shown in Fig. find the output c(k) for r(t) = unit step 7

b) Consider the sampled data system of Fig. Determine its characteristic equation in the z-domain and ascertain its stability via the bilinear transformation.

40356 [Turn over

CS/M.TECH (EE)/SEM-1/PSM-101/2010-11

a) Block diagram representation of a linear time-invariant system is given in Fig. Check whether the system is completely observable.

b) A discrete-time system has the transfer function

$$T(z) = \frac{4z^3 - 12z^2 + 13z - 7}{(z - 1)^2 (z - 2)}$$

Determine the state model of the system in

- (i) Phase variable form
- (ii) Jordan Camonical form.

7

- 3. a) State and prove Cayley Hamilton theorem.
- 7
- b) Find $[SI A]^{-1}$ using Leverrier Fedeev algorithm whose

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ -2 & -3 & -1 \end{bmatrix}$$
 7

40356 2

4. a) The plant is given by x = Ax + Bu where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The system uses uses the state feedback control law u = -Kx, Let us choose the desired closed loop poles at S = -2 + j4, S = -2 - j4, S = -10. Determine the state feedback gain.

- b) Explain Lag. Lead, & Lag-lead compensator. 7
- 5. a) Given plan

$$Gp (s) = \frac{40}{2s^3 + 10s^2 + 82s + 10}$$

$$H(s) = 1$$

Find and Kp, Ti, Td and transfer function of the PID controller, using Ziegler Nichols tuning.

- b) Explain the effects of proportional, integral & derivative control actions and system performance. 7
- 6. a) State the stability theorem of Liapunov for non-linear system.
 - b) Consider the dynamics of the system represented by

$$\begin{bmatrix} \bullet \\ X \\ \bullet \\ X \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- i) Formulate the Liapunovs function to test the Asymptotic stability.
- ii) Determine the asymptotic stability by using the Liapunov's second method.5

CS/M.TECH (EE)/SEM-1/PSM-101/2010-11

- 7. a) Is the system represented by 7 = mx + c a linear system? If not how can it be linearized? 1 + 3
 - b) Using method of isocline draw the phase trojectory for the system $\overset{\bullet\bullet}{\theta}+\theta=0$
 - c) Derive the describing function for "Dead-zone nonlinearity".

40356