
Abstract

Name : Roll No. \qquad Invigilator's Signature :

CS/M.TECH (EDPS)/SEM-1/EDPM-102/2011-12

2011
 ADVANCED CONTROL SYSTEMS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following questions.

1. a) How a system transfer function can be realized in controllable canonical form ?
b) Obtain the state-space representation using controllable canonical form of the transfer function :

$$
\begin{equation*}
\mathrm{G}(\mathrm{~S})=\frac{2 S+9}{S^{3}+8 S^{2}+12 S+10} \tag{6}
\end{equation*}
$$

2. a) How do you determine the feedback gain matrix K using Transformation Matrix T ?
b) Determine the state feedback gain matrix so that the closed loop poles of the following system are located at ($-2+j 4$), ($-2-j 4$), -10 .

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -5 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] k
$$

CS/M.TECH (EDPS)/SEM-1/EDPM-102/2011-12

3. A linear time invariant system is characterized byethe state equation

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

where u is a unit step function. Calculate the solution assuming initial condition

$$
\mathrm{X}_{0}=\left[\begin{array}{l}
1 \tag{14}\\
0
\end{array}\right]
$$

4. a) Show that the variation of dependent variable ' Z ' in the Z-plane as the independent variable ' ω ' varied along the imaginary axis in S-plane is given by a circle of unit radius at the origin of Z-plane, where
$Z=e^{ \pm j \omega t}$
b) Determine the pulse transfer function of the sampled data control system as shown below.

Sampling time, $T=0.5 \mathrm{sec}$.

5. a) Determine the describing function of an idealselay.
b) Using describing function analysis, determine the amplitude and frequency of the limit cycle when $\mathrm{k}=4$

8
6. a) Define phase plane, phase trajectory and phase portrait.
b) Plot the phase trajectory of the system shown with initial condition $e(o)=2$ and $\dot{e}(o)=0$

7. a) State Lyapunov's direct method for stability analysis. What are the conditions of Lyapunov's stability criterion?
b) A linear system is described by the state equation

$$
X=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] x
$$

Investigate the stability of this system by Lyapunov's theorem.

