	Utech
Name:	
Roll No.:	A disease of Exemples and Explane
Invigilator's Signature :	

CS/M.TECH (ECE)/SEM-2/MCE-205A/2013 2013

SATELLITE COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. **1** compulsorily and any *four* from the rest.

1.	Ans	swer the following :	7 × 2
	a)	What is meant by saying that a satellite is stationa	ry?
	b)	Define 'Argument of Perigee'.	
	c)	What is the main advantage of TDMA over FDMA	?
	d)	What is meant by 'Back Off'?	
	e)	What is meant by 'Transponder Hopping' ?	
	f)	What is ALOHA?	
	g)	The acronym SPADE stands for	

[Turn over

30512 (M.Tech)

- 2. a) Draw the block diagram of communication satellite and label each block.
 - b) Draw and explain a single conversion transponder for 6/4 GHz band. Why is double frequency conversion scheme normally used in 14/11 GHz band?
 - c) A geostationary satellite provides service to a region which can be covered by the beam of an antenna with a beam width of 1.8° . The satellite carries transponder for Ku band with separate antennas to transmit and receive at centre frequency of 14/11 GHz. Find the diameter and gain of the receiving antenna.
- 3. a) Discuss about a TDMA frame structure. 4
 - b) Discuss how synchronization can be achieved among different earth stations in a TDMA communication network.
 - c) Deduce Basic Traffic Equation and using Erlang-B model write the expression for the probability that the last available channel is busy.
- 4. a) Discuss about the different factors which dominate the design of satellite communication system.
 - b) Deduce Friss Transmission Equation. 5
 - c) Consider a 4 GHz receiver with the following gains and noise temperatures :

$$T_{in}=60$$
 K, $T_{RF}=40$ K, $T_{M}=600$ K, $T_{IF}=800$ K and $G_{RF}=23$ dB, $G_{M}=-10$ dB, $G_{IF}=20$ dB.

Calculate the system noise temperature, where T_{in} , T_{RF} , T_{M} and T_{IF} are the noise temperature of input, RF stage, mixer and IF stage respectively and G_{RF} , G_{M} and G_{IF} are the gain corresponding to RF, Mixer and IF stage respectively.

- 5. a) Prove Kepler's first and third laws from the Second Order Differential equation of satellite orbit.
 - b) A satellite is in an elliptical orbit with a perigee of 1000 km and an apogee of 4000 km. Using a mean earth radius of 6378·14 km find the period and eccentricity of the orbit.
 - c) Give the names of different factors which cause orbital perturbations of the satellite.
- 6. a) Describe the principle of operation of an ADC/SCPC/ PSK/FDMA Digital SCPC system. 5
 - b) What are the advantages of voice activation?
 - c) Deduce the expression for carrier to Noise power of a composite system consisting of uplink, satellite and downlink in terms of (C/N) ratio of the uplink, down link and inter modulation product.
- 7. Draw the block diagram of a general earth station of a satellite communication system and describe the main blocks in brief.
- 8. Write short notes on any *two* of the following : 2×7
 - a) active attitude control system
 - b) Domestic satellite system using small earth station antenna.
 - c) Various propagation factors which affect the transmission of satellite signal.

30512 (M.Tech)