	Utech
Name:	
Roll No.:	To Ourse by Exercising and Explored
Invigilator's Signature :	

CS/M.Tech(ECE/VLSI)/SEM-2/MVLSI-205C/2012 2012

MOBILE COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four questions from the rest.

- 1. Answer the following questions: $7 \times 2 = 14$
 - a) What is antenna sectoring?
 - b) Define channel capacity.
 - c) What is ISI in context of radio wave propagation?
 - d) Define slow-start.
 - e) What is skip-distance?
 - f) Compare between GSM and CDMA.
 - g) Is Bluetooth an ad-hoc network?

30130 (M.Tech)

[Turn over

- 2. a) What is frequency reuse ratio? Derive the relationship between the frequency reuse ratio and singal-to-interference ratio.
 - b) Consider 40 MHz is assigned to a cellular mobile network. The system uses two simplex channels of 20 kHz to provide full-duplex voice and control channels. Calculate the number of channels to be assigned per cell for a cluster size of 12.
 - c) Consider a cellular system having 2023 duplex channels to cover 1925 sq.km and each cell area is 5 sq.km for 7-cell reuse system. Compute system capacity. 1+5+4+4
- 3. a) Using two-ray ground reflection model find out the path distance between the line-of-sight and the ground reflection.
 - b) A mobile is located 5 km away from a base station and uses a vertical $\lambda/4$ monopole antenna with a gain of 2.55 dB to receive cellular radio signals. The *E*-field at 1 km from the transmitter is measured to be 10^{-3} V/m. The carrier frequency used for this system is 900 MHz.
 - i) Find the length and effective aperture of the receiving antenna.
 - ii) Find the received power at the mobile using tworay gound reflection model assuming the height of the transmitting antenna to be 50 m and the receiving antenna to be 1.5 m above the ground.

8 + 1 + 1 + 4

- 4. a) With proper diagram describe GSM system architecture.
 - b) Discuss qualitatively about the logical cahnnels of GSM system. 7 + 7
- 5. Explain about wireless application protocol (WAP) with diagram of
 - a) WAP protocol stack
 - b) WAP Programming model
 - c) WAP infrastructure.

5 + 4 + 5

- 6. a) Draw and explain the various fields in a IEEE 802.11 MAC frame formal.
 - b) Explain about IEEE 802.11 Physical layer. 7 + 7
- 7. a) Give a description of mobile IP.
 - b) How does mobile IP works?

7 + 7