|                           | Ulech                             |
|---------------------------|-----------------------------------|
| Name:                     | A                                 |
| Roll No.:                 | A Annual VX sensings and Explored |
| Invigilator's Signature : | •••••                             |

# CS/M.TECH(ECE-OLD)/SEM-2/MC-203/2012 2012

### LIGHT WAVE TECHNOLOGY FOR COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP - A**

#### (Objective Type Questions)

1. Answer any *five* questions :

 $5 \times 2 = 10$ 

- i) What is the V no. of a fibre?
- ii) What is a Q-factor of a linear cavity?
- iii) Why cladding should have lower refractive index than the core of optical fibre ?
- iv) Why crosstalk occur in a WDM system?
- v) What are the causes of attenuation in optical fibres?
- vi) What is the difference between electrical bandwidth and optical bandwidth?
- vii) What is the scientific meaning of the term monochromatism?

30253(M.TECH)

[ Turn over

#### **GROUP - B**

## ( Long Answer Type Questions )

Answer any four questions.

 $4 \times 15 = 60$ 

- 2. a) What are the advantages of optical fibre cable over co-axial cable?
  - b) What is meant by acceptance angle for an optical fibre?
  - c) Show how this is related to numerical aperture in case of a graded index fibre.
  - d) A silica optical fibre with a core diameter large enough to be considered by ray theory analysis has a core refractive index of 1.50 and a cladding refractive index of 1.47.

#### Determine:

- i) The critical angle at the core-cladding interface
- ii) The numerical aperture (NA) for the fiber
- iii) The acceptance angle in air for the fibre.

3 + 2 + 4 + 6

- 3. a) Draw the basic architecture of erbium-doped fibre amplifier (EDFA) and find its power conversion efficiency and gain.
  - b) Discuss any one topology for multihop light wave networks. 4 + 6 + 5
- 4. a) Explain the operational principles of WDM.
  - b) With suitable diagram discuss the concept of  $2 \times 2$  fibre optic coupler and define the terms coupling co-efficient, coupling ratio, excess loss, insertion loss and return loss. 5 + 5 + 5
- 5. a) Explain the working principle for *p-n* junction photodiode. Compare this device with *p-i-n* photodiode.

30253(M.TECH)



- b) Define Quantum efficiency and responsivity of a photo detector. Derive an expression for the responsibility of an intrinsic photo detector in terms of the quantum efficiency of the device and the wavelength of the incident radiation.
- c) GaAs has band gap energy of 1.43 ev at 300 k. Determine the wavelength above, which an intrinsic photo detector fabricated from this material, will cease to operate. (4+3)+(2+3)+3
- 6. a) With suitable block diagram explain the working principle of an optical receiver.
  - b) What are the design criteria of a front-end amplifier for the above receiver?
  - c) What are the different error sources that causes the bit error in optical fibre communication? Define bit error rate (BER). 6 + 4 + 4 + 1
- 7. Write short notes on any *three* of the following:  $3 \times 5$ 
  - a) Fibre Bragg grating
  - b) Optical Power budget
  - c) SONET/SDH
  - d) Optical Isolator.

=========