

Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any ten of the following briefly : $10 \times 2=20$
i) What is Bit Error Rate (BER) ?
ii) What is Message Error Rate (MER)?
iii) What is Undetected Message Error Rate (UMER)?
iv) What is encryption ?
v) What is decryption ?
vi) What is formatting?

CS/M.Tech (ECE)/SEM-2/MCE-202/2013
vii) What is source coding?

viii) What is channel coding ?
ix) What is coding gain ?
x) What is modulation and demodulation ?
xi) What is a linear block code? Why is it called as linear?
xii) For $a(n, k)$ block code what are n and k ? What is the length of a code word of a (7, 4) Linear Block Code?
xiii) What is n, k, m of $a(n, k, m)$ convolution code?
xiv) What are the code polynomials of binary cyclic code if the code words are [1111111], [1101111], [1100000].

GROUP - B

Answer any five of the following. $\quad 5 \times 10=50$
2. a) Draw the block diagram of a digital communication system and explain any two blocks of it.
b) Write down the advantages and disadvantages of digital communication.
3. a) Write short notes on any two of the following :
i) Universe of discourse or domain of discourse
ii) Frequency spread
iii) Formatting.
b) Explain either Forward Error Correction or Hybrid ARQ.
4. a) What is proposition ? Derive the truth table for Negation, Conjunction and Bi-conditional operators.
b) What is Tautology, Contradiction and Contingency ? Prove that $\rceil(P \vee G)$ and $(1 P \wedge\rceil Q)$ are logically equivalent.
5. a) What is Existential and Universal Quantifier ? What is the condition of logical equivalence with EX-OR and Bi-conditional operation ? Explain it with an example (truth-table).
b) What is uniqueness quantifier ? Prove that the existential quantifiers and the universal quantifiers are inclusive OR (?) and Conjunction (?) operations respectively.
6. a) What is Generator matrix ? Why is it called as generator ? For a (7, 4) block code write down the number of bits in message sequence, parity check sequence, code word with example.
b) For a (7, 4) block code Matrix $G=[1101000,0110100,1110010,1010001]$] and message sequence $U=[1101]$ then what is the corresponding code word ?
7. a) For a (7, 4) block code parity check matrix
$H=[100,010,001,110,011,111,101$], the transmitted code word $V=[1001011]$ and $r=[1001001$] then find out Syndrome (S).
b) Let $U=(1010)$ for a binary cyclic code and the generator polynomial $g(x)=1+X+X^{2}$; then find out the code vector.
8. a) For a (2, 1, 3) binary convolution code $g^{(1)}=[1011]$ and $g^{(2)}=[1111]$. For the message sequence of [1011] find out the code word.
b) For a ($2,1,3$) binary convolution code the generator polynomials are $g^{(1)} D=1+D^{2}+D^{3}, g^{(2)} D=1+D+D^{2}+D^{3}$ and message polynomial $U(D)=1+D^{2}+D^{3}+D^{4}$; then find out the code word.
9. a) Find the (7, 4) cyclic code generated by $g(X)=1+X+X^{3}$. Let $u(X)=1+X^{3}$ be the message to be encoded and also find the Generator matrix for the aforesaid generator polynomial.
b) Find the generator matrix in systematic form where the last four columns make a 4×4 identity matrix I_{4}.

