

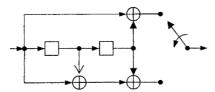
Nar	ne : .	
Roll	l No.	:
Invi	igilate	or's Signature :
		CS/M.Tech (ECE)/SEM-2/MCE-202/2013
		2013
		ERROR CONTROL CODING
Tim	e Allo	otted: 3 Hours Full Marks: 70
		The figures in the margin indicate full marks.
Co	andid	ates are required to give their answers in their own words as far as practicable.
		Answer Question No. 1 and any <i>three</i> from each of Group-B and Group-C.
		GROUP – A
		Answer <i>all</i> questions.
1.	a)	Define d_{\min} for a convolutional encoder.
	b)	How many different error patterns can a (n , k) linear block code detect ?
	c)	Define cyclic code. 2
	d)	Define dual spaces. 2
	e)	Define 'minimal polynomial' of any element of any extension Galois field.
	f)	What are primitive BCH codes?
		GROUP – B
		Answer any three of the following.
2.		termine the generator polynomial of a tripple error recting ($15,\ 5$) BCH code based on GF $\left(2^{4}\right)$ given in

30142 (M.Tech)

annexure-II.

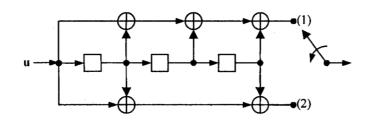
[Turn over

5


- 3. Derive a mathematical expression for the probability of undetected word error due a (n, k) block code. Also derive the expression if no channel coding were implemented. 4+1
- 4. What is 'fractional rate loss' in a convolutional code? Determine the fractional rate loss in a (3, 2, 2) convolutional encoder for a 100 bit long input message. 2+3
- 5. Explain the general structure of Reed-Solomon codes. Also explain that RS code has fairly good burst error correcting capability. 3+2

GROUP - C

Answer any three of the following.


- 6. a) Show a neat labelled block diagram of Chen's 'search & correct' circuit for a (15, 11), single error correcting BCH code based on the table of GF $\left(2^4\right)$ given in annexure-II. Explain its operation. 5+5
 - b) Derive a mathematical expression for the probability of undetected word error due a (n, k) block code, terms of the weight enumerator of its dual code. 5
- 7. a) Determine the generator polynomial of a (15, 11) double error correcting RS code. Also find the code word for the message word u = (11011110). Use GF (2^4) in annexure-I as reference. 5+5
 - b) Prepare the state transition table and construct the state diagram for the convolutional coder shown below.

- 8. a) Establish that all powers of α upto α^{2t} are roots of any code polynomial of a BCH code, where α is the root of the primitive polynomial, on which the code is based. 5
 - b) Define 'residual bit error rate' and derive a mathematical expression for the residual bit error due a (n, k) block code. 2+3
 - c) When is a block code called 'maximum distance code'?
 - d) How 'Mc William's identity' relates the weight enumerators of a block code and its dual?

9.

- a) Determine the impulse response polynomial $g^{(1)}$ (D) and $g^{(2)}$ (D) for the above convolutional coder.
- b) For an information sequence u = (10101), determine the two encoded sequence polynomial $v^{(1)}$ (D) and $v^{(2)}$ (D).
- c) Combine the above two encoded sequence polynomials to determine the code word polynomial v (D) and hence the code word v.

CS/M.Tech (ECE)/SEM-2/MCE-202/2013

d) Establish that all single error correcting BCH codes are Hamming codes.

$GF(2^4)$	Annexure-I	GF $\left(2^{4} ight)$ Annexure-II			
P(X) =	$= 1 + X + X^4$	$P(X) = 1 + X^3 + X^4$			
0	0	0	0		
1	1	1	1		
α	α	α	α		
α^2	$\frac{\alpha^2}{\alpha^3}$	α^2	$\frac{\alpha^2}{\alpha^3}$		
α^3	α^3	α^3	ασ		
Ι α΄	$1 + \alpha$	α^4	$1 + \alpha^3$		
α^5	$\alpha + \alpha^2$	α^5	$1 + \alpha + \alpha^3$		
α	$\alpha^2 + \alpha^3$	α^6	$1 + \alpha + \alpha^2 + \alpha^3$		
α^7	$1 + \alpha + \alpha^{\circ}$	α^7	$1 + \alpha + \alpha^2$		
α 8	$1 + \alpha^2$	α 8	$\alpha + \alpha^2 + \alpha^3$		
α9	$\alpha + \alpha^3$	α9	$ \frac{1 + \alpha + \alpha^2}{\alpha + \alpha^2 + \alpha^3} $ $ \frac{1 + \alpha^2}{\alpha + \alpha^2} $		
α^{10}	$1 + \alpha + \alpha^2$	α^{10}	$\alpha + \alpha^3$		
α^{11}	$\alpha + \alpha^2 + \alpha^3$	α^{11}	$1 + \alpha^2 + \alpha^3$		
α^{12}	$1 + \alpha + \alpha^2 +$	α^{12}	1 + α		
α^{13}	$1 + \alpha^2 + \alpha^3$	α^{13}	$\alpha + \alpha^2$		
α^{14}	$\frac{\alpha^3}{1+\alpha^2+\alpha^3}$ $1+\alpha^3$	α^{14}	$\alpha^2 + \alpha^3$		
β	Φ (β) <i>X</i>	β	Φ (β)		
0	X	0	X		
1	1 + X	1	Φ (β) X 1 + X		
$\alpha, \alpha^2, \alpha^4, \alpha^8$	$1 + X + X^4$	$\alpha, \alpha^2, \alpha^4, \alpha^8$	$1 + X^3 + X^4$		
$\begin{array}{c} \alpha \\ \alpha^3, \alpha^6, \\ \alpha^9, \alpha^{12} \end{array}$	$ \begin{array}{r} 1 + X + X^2 + \\ X^3 + X^4 \\ 1 + X + X^2 \end{array} $	$\begin{bmatrix} \alpha^3, \alpha^6, \\ 9 & 12 \end{bmatrix}$	$1 + X + X^2 + X^3 + X^4$		
α^5, α^{10}	$1+X+X^2$	α^5, α^{10}	$1 + X + X^2$		
$\begin{array}{c} \alpha^5, \alpha^{10} \\ \alpha^7, \alpha^{11}, \\ \alpha^{13}, \alpha^{14} \end{array}$	$1 + X^3 + X^4$	$\begin{array}{c} \alpha, \alpha \\ \alpha^5, \alpha^{10} \\ \alpha^7, \alpha^{11}, \\ \alpha^{13}, \alpha^{14} \end{array}$	$1 + X + X^4$		