	Utech
Name:	(4)
Roll No.:	In Palmone (NY Exercising and Excellent)
Invigilator's Signature :	

CS/M.Tech(ECE)/SEM-2/MCE-202/2012 2012

ERROR CONTROL CODING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) For (7, 4) Hamming code, the parity-check bits for information words (i_1, i_2, i_3, i_4) is
 - a) $i_1 + i_2 + i_3$ b) $i_1 + i_3 + i_4$
 - c) $i_1 + i_2 + i_4$
- d) both (a) and (b).
- For even parity (5, 4) block code, p_c for p = 0.1 is ii)
 - 0.5905a)
- 0.5815b)

- 0.5616c)
- 0.5915.d)

30018 (M.Tech)

[Turn over

pattern '0000010' is

(010)a)

iii)

(100)b)

c) (001)

(011). d)

A block code with minimum distance $d_{\it min}$ can defect all iv) error patters with error detecting limit, *I* equal to

- a) $d_{min} + 1$
- $2d_{min}-1$
- $d_{min} 1$ c)
- d) $2d_{min} + 1$.

Systematic codeword for (5, 3) linear code for v) information word (101) is

- (110110) a)
- b) (10100)
- c) (10101)
- d) (10011).

vi) The error syndromes of the received word (1101101) in (7, 4) code, is

(001)a)

b) (010)

(011)c)

d) (100).

vii) If the information polynomial for a (n, k) cyclic code is i (x), generator polynomial is g (x), remainder polynomial is r(x), then the systematic code word polynomial c(x) is equal to

- c(x) = i(x) + r(x)
- b) $c(x) = i(x) x^{n-k} + r(x)$
- c) c(x) = i(x)g(x)
- d) c(x) = i(x) + g(x).

viii) In a (7, 4) code, if the parity check polynomial is $x^4 + x^2 + x + 1$, then the generator polynomial of its dual code is

a) $x^3 + x^2 + x + 1$ b) $x^4 + x^2 + x + 1$

c) $x^4 + x^3 + x^2 + x$ d) $x^4 + x^3 + x + 1$.

The dimension of the subspace in V_5 consisting of the ix) vectors (00000), (11100), (01010), (10001), (10110), (101101) and (00111) is

a) 3

2 b)

c) 4 d) 5.

The generator polynomial of GE (2^4) is $x^4 + x + 1$. If x) α^7 is a root of this polynomial belonging to GF (2⁴), then the minimal polynomial will be

a) $x^4 + x + 1$

b) $x^4 + x^2 + 1$

c) $x^4 + x^3 + 1$

d) $x^3 + x + 1$.

Which of the following codes belongs to non-binary xi) BCH code?

Cyclic code a)

Block code b)

Hamming code c)

d) Reed-Solomon code.

Previous inputs are considered in which of the following xii) code?

Convsolation code a)

BCH code b)

Reed-Solomon code c)

None of these. d)

GROUP - B

(Short Answer Type Questions)

- 2. Show that the following linear codes are not cyclic:
 - a) The (6, 3) code with generator matrix

b) The (5, 2) code with generator matrix.

$$G = \left[\begin{array}{ccccc} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{array} \right]$$

- 3. What is Galois field? Why is it called field? Give reason and example in support of your answer.
- 4. What do you mean by vector space? What are called linear dependent and independent vector spaces? How can you find the dimension of a vector space and the basis of a vector space?
- 5. Find the ninimal polynomials for α , α^2 and α^3 which are the roots of $x^4 + x + 1 = 0$ in GF (2⁴).
- 6. Construct a triple error-correcting BCH code with block length n=31 over GF (2^5), the generator polynomial in GF (2^5) is $g(x) = x^5 + x^2 + 1$.

30018 (M.Tech)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) Show that the row space of the matrix

$$G = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

gives the codewords of the (5,3) linear code.

- b) Show that every codeword in the (7, 3) code is orthogonal to every other codeword.
- c) What do you mean by dual code? Give example.

$$6 + 6 + 3$$

8. a) Determine whether the polynomials

$$p_{1}(x) = x^{4} + x^{3} + x + 1, p_{2}(x) = x^{2} + x + 1,$$

 p_3 (x) = x^3 + x^2 + 1 over GF (2) are (i) irreducible and (ii) primitive.

CS/M.Tech(ECE)/SEM-2/MCE-202/2012

- Find the roots of $x^3 + \alpha^8 x^2 + \alpha^{12} x + \alpha = 0$ defined over GF (2 ⁴).
- Determine the inverse of the matrix c)

$$A = \begin{bmatrix} \alpha^{12} & 0 & \alpha \\ 1 & \alpha^8 & \alpha^{14} \\ \alpha^2 & \alpha^{11} & \alpha^5 \end{bmatrix}$$

over GF
$$(2^3)$$
 and GF (2^4) . $6 + 3 + 6$

- Determine a linear feedback shift register for dividing 9. a) by the polymonial $p(x) = x^5 + x^3 + x + 1$. By considering the operation of the register, determine the remainder and quotient of $x^7 + x^2 + 1$ divided by p(x). Check your answer using the 'long hand' method for polynomial division.
 - b) Draw and explain the operation of an encoder circuit for (7, 4) cyclic code with $g(x) = x^3 + x + 1$.
- 10. a) Construct a single error-correcting binary BCH code over GF (2^3).

- b) Given the minimal polynomials of α & α^3 in GF (2³) are $m_1(x) = x^5 + x^2 + 1$ and $m_3(x) = x^5 + x^4 + x^3 + x^2 + 1$ respectively, construct a binary doubl error-correcting code over
- c) Determine the generator polynomial of the double errorcorrecting (15, 11) Reed-Solomon codes. 5+5+5
- 11. Write short notes on any *three* of the following : 3×5
 - a) Reed-Solomon code

GF (2^5) .

- b) Convolutional code
- c) Berlekamp algorithm
- d) Cyclic code
- e) Vector space.
