

CS/M. Tech (ECE)/SEM-2/MCE-202/2013 2013
ERROR CONTROL CODING
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any ten of the following : $10 \times 1=10$
a) A code with minimum distance $d(\min)=5$. How many errors it can correct?
b) Which degree of generator polynomial can generate a $(7,4)$ Cyclic code ?
c) What is the factor of a generator polynomial of a Cyclic code?
d) What is the memory order of an encoder of (4, 3, 2) convolution code ?
e) What is the length of a BCH code ?
f) What are the numbers of shift registers in (2, 1, 2) convolution code?
g) What is the condition of a dual code in case of tinear Block code ? Blot
h) What are the differences between single error and burst error ?
i) Definition of Block code
j) What is Hamming code ?
k) What is Linear code ?
1) What is Cyclic code ?

GROUP - B

Answer any three of the following : $\quad 3 \times 5=15$
2. A $(7,1)$ repetition code is used to encode information sent through a channel with a bit-error probability of 0.01 . Find the probability that an information bit is erroneous after decoding.
3. Consider the $(4,3)$ even-parity code with the 8 codewords. (0000), (0011), (0110), (1100), (0101), (1010), (1001), (1111).

Show that the code is linear.
4. Consider the $(8,4)$ extended Hamming code. Determine the outcome of a decoder when the codeword $\mathrm{c}=(00101101)$ incurs the errors
a) $e_{1}=(00100000)$
b) $e_{2}=(10000100)$
c) $e_{3}=(00000111)$
5. Determine nonsystematic codeword polynomiats, for the $(7,4)$ code, given $i_{1}=(1100)$ and $i_{2}=(1001)$.
6. Assuming the $(7,4)$ Cyclic code, determine the systematic codeword polynomials for $i_{1}=(1001)$ and $i_{2}=(1110)$.

GROUP - C

Answer any three of the following. $3 \times 15=45$
7. a) Construct a Linear Feedback Shift Register for dividing $x^{7}+x^{6}+x^{2}+x+1$ by $x^{4}+x^{2}+1$.
b) Solve the following equations over the prime field modulo-5
$2 x+3 y=1$
$x+2 y=2$
c) Given that α is a field element of GF $\left(2^{3}\right)$ evaluate
i) $\left(\alpha^{2} a^{-5}+1\right)\left(\alpha^{2}+\alpha\right)$
ii) $\sqrt{\left(\alpha^{4} \alpha^{5}+\sqrt{\alpha)}\right.}$.

Repeat when α an element of GF $\left(2^{4}\right)$ is. $6+3+6$
8. a) Determine whether the polynomials
$P 1(x)=x 4+x 3+x+1$
$P 2(x)=x 2+x+1$
$P 3(x)=x 3+x 2+1$
Over GF (2) area (a) irreducible and (b) primitive.
b) Determine systematic and nonsystematic code words for $i=\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$ given the $(7,4)$ code with $g(x)=x 3+x+1$. $8+7$
9. a) The $(15,11)$ single-error-correcting binary BCH code has $g(x)=x^{4}+x+1$. Show that α, α^{2} and α are roots of $g(x)$ but α^{3} is not a root, where α is a primitive field element of GF $\left(2^{4}\right)$. Find the fourth root of $g(x)$.
b) Find the determinant of the matrix $A=\left[\begin{array}{ccc}1 & \alpha^{4} & \alpha^{3} \\ \alpha^{2} & 0 & \alpha \\ \alpha^{4} & \alpha & \alpha^{5}\end{array}\right]$ Over GF (2^{3}) and GF (2^{4})
10. a) Construct the $(15,13)$ single-error-correcting reedsolomon code and determine the systematic codeword corresponding to $i=\left(00 \alpha 001 \alpha^{7} \alpha^{2} 001 \alpha \alpha^{2}\right)$ where α is a primitive element of GF $\left(2^{4}\right)$.
b) Show that $\alpha, \alpha^{2}, \alpha^{3}$ and α^{4} are roots of $g(x)=x^{8}+x^{7}+x^{6}+x^{4}+1$, the generator polynomial of the $(15,7)$ double-error-correcting binary BCH code, where α is a primitive element field of GF $\left(2^{4}\right)$. $8+7$
11. a) Design a shift register with stages and $g_{0}=1, g_{1}=0, g_{2}=1, g_{3}=1$. Determine the output sequence for the input sequence $u=(1001)$.
b) Determine the output sequence from the $(4,3,2)$ convolution encoder, given the input sequences $u^{1}=(101), u^{2}=(110)$ and $u^{3}=(011)$. $8+7$

