	Utech
Name:	
Roll No.:	As Phones (5' Exercisely: 2nd Explored
Invigilator's Signature :	

CS/M.Tech(ECE-VLSI)/SEM-2/MVLSI-204B/2012 2012

ERROR CONTROL & CODING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer *all* the questions.

- 1. Explain the error detecting capability of Linear Block Code. 4
- 2. (7, 4) linear cyclic code has a generator polynomial $g(x) = 1 + x + x^3$. Draw the syndrome circuit and find out the syndrome showing all the contents of the registers in all the required shifts for r = 0010110. 3 + 3
- 3. Explain why an error correcting code must at least satisfy Hamming Bound. What is Hamming Code? 3+1

30201 (M.Tech)

[Turn over

GROUP - B

Answer any four of the following questions.

Write short notes on any two of the following:

- a) Advantages and disadvantages of convolution code
- b) Standard array
- c) Dual code

4.

- d) Shortened cyclic code.
- 5. Find the general expression for the probability of error in a binary symmetric Gaussian channel.
- 6. The parity check bits of a (8, 4) block code are generated by

$$C_5 = d_1 \oplus d_2 \oplus d_4$$
, $C_6 = d_1 \oplus d_2 \oplus d_3$

$$C_7 = d_1 \oplus d_3 \oplus d_4$$
, $C_8 = d_2 \oplus d_3 \oplus d_4$

- a) Find the generator matrix and the parity check matrix for this code.
- b) Find the minimum weight of this code.
- c) Find the error detecting and the error correcting capability of this code. 6+4+4
- 7. a) Construct a decoding table for the (7, 4) cyclic code for the error pattern e = 1000000, e = 0100000, e = 0001000. Assume $g(x) = x^3 + x^2 + 1$. Determine the data vector corresponding to the received vector r = 1101101.
 - b) Consider $g(x) = x^3 + x + 1$. Design an encoding circuit for (7, 4) cyclic code and determine the output for the input data1011. (6+3)+(3+2)

- 8. a) The polynomial $P(x) = 1 + x + x^4$ is a primitive polynomial over GF(2). Find the elements of GF(2⁴) and show their polynomial representation.
 - b) Determine the generator polynomial of a single and double error correcting BCH code whose block length is 15. 7 + 7
- 9. The generator polynomial for a cyclic code with block length 7 is $g(x) = 1 + x + x^3$.
 - a) Find the parity check matrix H.
 - b) How many errors can this code detect?
 - c) How many errors can this code correct?
 - d) Write the generator matrix in the systematic form.
 - e) Find the generator polynomial of the dual code.

$$5 + 2 + 2 + 3 + 2$$