

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. a) State Dirichlet's condition.
b) Briefly explain the relation between z-transform and Laplace transform.
c) Briefly explain the relation between z-transform and DTFT.

Justify the following sentences :
d) A discrete LTI system is stable causal if and only if the ROC of the transfer function $H(z)$ includes the unit circle.
e) A discrete LTI system will be causal if and only if the ROC is the exterior of a circle outside the outermost pole.
f) Delta function is a frequency independent function.
g) If the ROC of a Z-transform includes the unit circle, the Discrete Time Fourier Transform shall also exist. But reverse statement is not true. 7×2
2. a) Show that convolution sum is the only propertyof linear system.

Also show that
i) if system is LTI then output is $y(n)=\sum_{k=-\infty}^{k=\infty} x(k) h(n-k)$
ii) if the system is linear time varying system then output is $y(n)=\sum_{k=-\infty}^{k=\infty} x(k) h(n, k)$
where $x(n)=$ input sequence, $h(n)=$ impulse response of the system.
b) Find the inverse z-transform of

$$
X(z)=z /\left(3 z^{2}-4 z+1\right) \text { for }|z|>1
$$

c) Find the Z-transform of $x(n)=n a^{n} u(n)$.
d) Find the convolution sum of the following sequences $x(n)=\{4,-3,2\}, h(n)=\{-1,2,2\}$ using graphical method.
3. a) Prove that the angular frequency of a discrete time signal is bounded within $-\pi$ to π.
b) What are the differences between DFT and DTFT ?
c) Find out the IDFT of $Y(k)=\{4,0,4,0\}$.
d) What is the difference between linear convolution and circular convolution?
e) Obtain the linear convolution of the following sequences $x(n)=\{2,-1,2\}, h(n)=\{1,-1,2\}$ using circular convolution.
$2+1+5+1+5$
4. a) Determine $H(z)$ from $H(s)=2 /\left(s^{2}+3 s+2\right)$ using bilinear transformation if
i) $\quad T=1 \mathrm{sec}$
ii) $\quad T=0 \cdot 1 \mathrm{sec}$.
b) Write two advantages and disadvantages of bilinear transformation.
c) Determine the z-transform, the region of convergence, and the Fourier Transform of the following signal

$$
x(n)=n \cdot a^{n} u(n) . \quad 6+2+6
$$

5. a) Obtain the direct form I and II realization for the system described by the following difference equation :
$y(n)-0 \cdot 75 y(n-1)+0 \cdot 125 y(n-2)=x(n)+0 \cdot 5 x(n-1)$
b) Find the n-point DFT of the following sequence :

$$
h(n)=1 / 3 \text { for } 0 \leq n \leq 2
$$

$$
=0 \quad \text { otherwise } \quad 9+5
$$

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2013
6. a) Design a low-pass digital filter that will have a -3 dB cut-off at $30 \pi \mathrm{rad} / \mathrm{sec}$ and an attenuation of 50 बB at $45 \mathrm{rad} / \mathrm{sec}$. The filter is required to have a linear phase and the system uses a sampling rate of 100 samples/sec.
b) Explain and distinguish clearly between FIR and IIR filters and show which filter has linear phase characteristics. $9+5$
7. a) What is multirate signal processing and why is it necessary in digital signal processing ?
b) Distinguish between interpolation and decimation and analyze the rate converter with a rational factor of $1 / \mathrm{D}$. Hence discuss the role of low-pass filter on multirate signal conversion. $4+10$

