	Utech
Name :	
Roll No.:	A Grant of Executing and Explana
Inviailator's Signature :	

CS/M.TECH(ECE-MVLSI)/SEM-2/MVLSI-202/2012 2012

DIGITAL SIGNAL PROCESSING & APPLICATIONS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 is compulsory and attempt any four questions from the rest.

- 1. i) Check for linearity
 - a) y(n) = x(n) + 1/x(n-1)
 - b) $y(n) = x(n) \cos \omega$
 - ii) Check for time invariance
 - a) y(n) = x(-n)
 - b) $y(n) = e^{x(n)}$
 - iii) Check for causality

$$y(n) = \sum_{k=-\infty}^{n+1} x(k)$$

- iv) Check for stability
 - a) $y(n) = x(n)e^{n}$
 - b) $y(n) = \cos \{x(n)\}$

4 + 4 + 2 + 4

30061(M.TECH)

[Turn over

CS/M.TECH(ECE-MVLSI)/SEM-2/MVLSI-202/2013

- 2. a) Define periodic and aperiodic signals with examples
 - b) Determine whether the following signals are periodic, if so, then specify its fundamental period:
 - i) $x(n) = e^{j6\pi n}$
 - ii) $x(n) = \cos \{(\pi/3) n\} + \cos \{(3\pi/4) n\}$
 - c) Explain time domain sampling & frequency domain aliasing. State Nyquist Sampling Theorem. 3 + 4 + 7
- 3. a) Explain with examples:
 - i) Real exponential signal
 - ii) Complex exponential signal.
 - b) Define:
 - i) Energy Signal and
 - ii) Power Signal.
 - c) Find whether the following signal is a power signal or energy signal:

$$x(n) = \sin \{(\pi/4) n\}$$

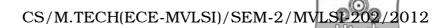
$$5 + 5 + 4$$

- 4. a) Write down the physical significance of linear convolution. How linear convolution can be achieved from circular convolution?
 - b) Find the convolution of the following signals:

$$x(n) = 1$$
 when $n = -2, 0, 1$

$$= 2 \text{ when } n = -1$$

= 0 elsewhere


$$h(n) = \delta(n) - \delta(n-1) + \delta(n-2) - \delta(n-3)$$

c) Find the convolution of two finite duration sequences :

$$x(n) = b^n u(n), h(n) = a^n u(n)$$

when (i)
$$a \neq b$$
 and (ii) $a = b$

4 + 4 + 6

- 5. a) Write down the physical significance of Z-transform.
 What is its relation with Fourier transform & how are they different?
 - b) Find the Z-transform & ROC of : $x(n) = r^n \cos n \theta u(n)$
 - c) Find out the relationship between s-plane and z-plane.
 - d) Find one sided *Z*-transform to determine

$$y(n)$$
; $n \ge 0$

if
$$y(n) = (1/2)y(n-1) + x(n), x(n) = (1/3)^n u(n), y(-1)$$

= 1 $4 + 3 + 3 + 4$

- 6. a) What are frequency domain sampling and time domain aliasing?
 - b) Determine the 8-point DFT : $x(n) = \{1, 1, 1, 1, 1, 1, 0, 0\}$
 - c) Determine the IDFT of x (k) = { 1, 0, 1, 0 } 4 + 6 + 4
- 7. a) Write down the difference between DIT-FFT and DIF-FFT. What is bit reversal logic? How the number of complex multiplications can be reduced using FFT algorithm?
 - b) Find the DFT of the following sequence using DIT-FFT algorithm : $\{1, 2, 3, 4, 4, 3, 2, 1\}$ 6 + 8

CS/M.TECH(ECE-MVLSI)/SEM-2/MVLSI-202/201

- 8. a) Write down the difference between a digital and an analog filter.
 - b) Design an analog Butterworth filter that has α 2dB passband attenuation at a frequency of 20 rad/sec and at least 10dB stop band attenuation at 30 rad/sec.
 - c) For analog transfer function $H(S) = \{2/(s+1)(s+2)\}$ of a Butterworth filter using impulse invariant method. Assume T = 1sec. 3 + 6 + 5