

Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
Answer all the following questions.

1. Answer the following questions :
$4+2+4+2+2$
a) What is the difference between linear and circular convolution ?
b) Utility of FFT and DFT.
c) Why 16 -point DFT is preferable than 4 -point DFT
d) If $x(n)=\{1,0,0,1\}$, the DFT value $x(0)$ is?
e) What is a power signal ?

CS/M.Tech (ECE)/SEM-2/MVLSI-202/2013
GROUP - B
Answer any four of the following. $\quad 4 \times 14=56$
2. a) Determine the z-transform of the following sequence and its ROC, $x(n)=(n+0 \cdot 5) \frac{1}{3} u(n)$.
b) Determine the DFT of the sequence $x(n)=\{0,2,4,6\}$.
c) Determine the direct form of realization of a linear phase FIR filter specified by the impulse response $h(n)=\{2,4,6,6,4,2\} \quad 5+5+4$
3. Write short notes on the following :
a) Causal and non-causal system.
b) Overlap-add method and overlap-save method
c) Butterworth filter.
4. a) Compute the 8 -point DFT of the following sequence, $x(n)=\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0\right\}$. Use in-place radix- 2 decimation in time FFT algorithm.
b) What is a butterfly regarding FFT ?
c) What are the difference and similarities between DIT and DIF algorithms ?

$$
10+2+2
$$

5. a) Determine the sectional convolution whose aimpulse response is $h(n)=\{1,1,1\}$ andinput signal is $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap-save method.
b) Describe IIR low-pass filter design using bilinear transformation mode. $7+7$
6. a) Find the system function and impulse response of the system described by the difference equation,
$Y(n)=X(n)+2 X(n-1)-4 X(n-2)+X(n-3)$.
b) Find the linear convolution using circular convolution for the sequences :
$x(n):\{1,2,-1,2,3,-2,-3,-1,1,1,2,-1)$, $h(n)=\{1,2\}$
c) What are the properties of the ROC ? Find the Z-transform and the ROC of the signal $X(n)=-b^{n} U(-n-1) . \quad 4+5+5$
