
 Name :
 Roll No.
 \qquad N UREGh
 Invigilator's Signature :
 \qquad
 CS/M.Tech(ECE-COMM)/SEM-2/MCE-204B/2011 2011 ARTIFICIAL INTELLIGENCE \& SOFT COMPUTING

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and any four from the rest. Answer all parts of any question at one place.

1. a) What is intelligence ? How does it vary from human's intelligence?
b) Briefly illustrate, how the Truth Maintenance System (TMS) is designed to handle complication. $1+3+6$
2. a) Prove that, the Breadth First Search (BFS) is a special case of uniform cost search.
b) Derive the expression of multi-objective fuzzy pattern recognition model, for a decision making problem.
c) What is support vector machine (SVM) classifier ? What is the need of that? $4+6+5$

CS/M.Tech(ECE-COMM)/SEM-2/MCE-204B/2011
3. a) What is feature vector ? Derive the expression for classification error. Why is Baye's minimum error classifier required?
b) Obtain the different Discriminant Functions for Multivariate Normal Disribution. $1+4+3+7$
4. a) What do you mean by perception ? Explain different types of learning.
b) Consider a two-class classification problem with $P\left(w_{1}\right)=0 \cdot 6, P\left(w_{2}\right)=0 \cdot 4$, $P\left(x \mid w_{1}\right)=1 / \sqrt{2 \Pi} \exp \left[-0 \cdot 5 x^{2}\right]$ and $P\left(x \mid w_{2}\right)=1 / \sqrt{2 \Pi} \exp \left[-0 \cdot 5(x-1)^{2}\right]$. Find the decision regions and boundaries for the minimum error rate Baye's classifier.
c) Write down the predicate logic statements for the following :
i) Raj likes all kinds of food
ii) Hari likes anything which Raj likes
iii) Ram likes those which Raj and Hari both like.

$$
1+4+4+6
$$

5. a) Mention the need for the De-fuzzification. Explain three types of De-fuzzification with its formularn
b) How does predicate logic differ from propositional logic ? Explain in brief.
c) Let $X=\{a, b, c, d\}, Y=\{1,2,3,4\}$ and $\widetilde{A}=\{(a, 0)(b, 0 \cdot 8)(c, 0 \cdot 6)(d, 1)\}$, $\widetilde{B}=\{(1,0 \cdot 2)(2,1)(3,0 \cdot 8)(4,0)\}$, $\widetilde{C}=\{(1,0)(2,0 \cdot 4)(3,1)(4,0 \cdot 8)\}$

Determine the implication relations :
i) IF X is \widetilde{A} THEN Y is \widetilde{B}
ii) IF X is \widetilde{A} THEN Y is \widetilde{B} ELSE Y is \widetilde{C}.
d) Test, $\left.\left(\begin{array}{ll}P & Q\end{array}\right) \quad(P=Q)\right)=(P=Q)$ is a tautology or, contradiction. $4+3+5+3$
6. a) Write down the training algorithm for a Radial Basis Function (RBF) with fixed centres.
b) What is linear separability ? Explain.
c) What is the difference between single and multiobjective optimizations?
$8+4+3$
7. a) Develop a perceptron for the AND function with bipolar inputs and bipolar targets.
b) Write down the working principle of Genetic Algorithm. Why is fitness function required in Genetic Algorithm ?
c) Discuss about different types of clusters.

$$
7+4+4
$$

