
 Name :
 Roll No. :
 \qquad Noman Invigilator's Signature :
 \qquad
 CS/M.Tech (ECE)/SEM-2/MCE-204B/2013 2013
 ARTIFICIAL INTELLIGENCE \& SOFT COMPUTING

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. a) Give McCu (loch-Pitts model for artificial neurons.
b) Give the X-projection and Y-projection of :

$$
\mu_{R}(x, y)=\left(\begin{array}{ccc}
0 \cdot 1 & 0 \cdot 5 & 0 \cdot 2 \\
0 \cdot 9 & 0 \cdot 7 & 0 \cdot 1 \\
0 \cdot 3 & 0 \cdot 5 & 0 \cdot 6
\end{array}\right)
$$

c) Prove : $p \rightarrow(q \rightarrow r) \Rightarrow(p \Rightarrow q) \Rightarrow r$ where p, q and r are three propositions.
d) A box contains 10 screws, out of which 3 are defective. Two screws are drawn at random. Find the probability that name of the two screws are defective using :
i) Sampling with replacement
ii) Sampling without replacement.

CS/M.Tech (ECE)/SEM-2/MCE-204B/2013
e) What is the difference between BFS and DFS search techniques?

f) Solve for $\left(X_{1}, X_{2}\right)$ with the help of 'problemdecomposition and constraint-satisfaction' approach. Given : $X_{1} \geq 2, X_{2} \geq 3, X_{1}+X_{2} \leq 6, X_{1}, X_{2} \in I$

$$
3+2+2+3+2+2
$$

2. a) With reference to a typical production system, what is 'Recognise-Act Cycle’?
b) Why are conflict resolution strategies required in production systems ? Outline the various conflict resolution strategies.
c) Prove :
i) $\quad p \rightarrow q \equiv\urcorner p \vee q$
ii) $p \rightarrow q \Rightarrow 7 q \rightarrow 7 p . \quad 3+6+5$
3. a) What is resolution theorem ?
b) Prove the resolution theorem using Wang's algorithm.

CS / M.Tech (ECE)/SEM-2 / MCE-204B/2013 viesh
c) Prove that Dog (fido) follows from the following statements by resolution theorem.
i) $\quad \forall X$ Barks $(X) \rightarrow \operatorname{Dog}(X)$
ii) $\quad \forall X \forall Y \exists Z$ Has-master $(X, Y) \wedge \operatorname{Likes}(X, Y) \wedge$ Unprecedented situation (Z) \rightarrow Barks (X)
iii) Unrecedented-situation (noise)
iv) Likes (fido, jim)
v) Has-master (fido, jim).
4. a) Explain unsupervised learning with respect to artificial neural networks.
b) Briefly outline discrete hopfield net.
c) What is the difference between competitive leaning and Hebbian learning with respect to Artificial neural networks.
d) Outline two common topologies to be found in artificial neural networks.
$5+5+2+2$

CS/M.Tech (ECE)/SEM-2/MCE-204B/2013
5. a) Describe the process of genetic algorithm with ${ }_{f}$ the help of a simple schematic diagram.
b) Outline the optimization of function $f(x)=x^{2}-25$ with the help of Genetic Algorithm using a population of 5 chromosomes and 2 iterations.
c) Describe the process of differential evolution with the help of its schematic diagram. $5+4+5$
6. a) Describe the perceptron learning algorithm along with a simple schematic diagram.
b) Outline the method for translational-invariance and rotational-invariance ($90^{\circ}, 180^{\circ}, 270^{\circ}$) given by Widrow-Hoff with ADALINE neurons.
c) Construct :
i) Logical AND gate
ii) Logical OR gate with McCulloch-Pitts neurons.

$$
5+6+3
$$

```
CS / M.Tech (ECE)/SEM-2 / MCE-204B/2013
                                    UResh
7. a) Why is Fuzzy production system better than traditional
```

``` production system?
b) Outline any three Fuzzy implications rules.
c) For the given Fuzzy set : \(A=\{x 1 / 0 \cdot 2, x 2 / 0 \cdot 4, x 3 / 1, x 4 / 0 \cdot 7, x 5 / 0 \cdot 6, x 6 / 0 \cdot 5, x 7 / 0 \cdot 9, x 8 / 0\}\)
Calculate the following :
i) \(\quad \operatorname{Core}(A)\)
ii) Support ( \(A\) )
iii) Is A a 'normal' fuzzy-set?
iv) \(\alpha\)-cut ( \(A\) ) \(\left.\right|_{\alpha=0.6}\)
v) \(\quad \alpha\)-cut ( \(A)\left.^{+}\right|_{\alpha=0.6}\) (Strong \(\alpha\)-cut ).

CS/M.Tech (ECE)/SEM-2/MCE-204B/2013
d) PR1 : If age is YOUNG THEN digestion-rate is HLGH.

PR2 : If digestion-rate is HIGH THEN speed is HIGH.

Find \(\mu_{R}\) (age, speed) if :
digestion-rate \(\rightarrow\)

\[
\begin{aligned}
& 2+3+5+4
\end{aligned}
\]
8. a) Prove :
\[
P\left(H_{j} / E_{1}, E_{2}, \ldots . ., E_{m}\right)=\frac{\prod_{i=1}^{m} P\left(E_{i} / H_{j}\right) P\left(H_{j}\right)}{\sum_{k=1}^{n} \prod_{i=1}^{m} P\left(E_{i} / H_{k}\right) P\left(H_{k}\right)}
\]
for the Hypothesis space \(H\) consisting of \(H_{j} ; 1 \leq j \leq n\) and evidence space consisting of \(E_{i} ; 1 \leq i \leq m\).

CS / M.Tech (ECE)/SEM-2 / MCE-204B/2013
b) Describe the process of Hill Climbing. What is the problem of 'trapping at local minima at a foothill' encountered in hill-climbing?
c) Outline the process of simulated-annealing. How it overcomes the problem of 'trapping at local minima at a foothill' encountered in hill-climbing ? \(7+3+4\)```

