

CS/M.TECH(ECE-OLD)/SEM-2/MCE-204B/2012

## 2012

## ARTIFICIAL INTELLIGENCE \& SOFT COMPUTING

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and any four from the rest. $5 \times 14=70$

1. i) How will you measure the distance between two sets ? 2
ii) Determine the truth value of the following propositions $P_{1}$ and $P_{2}$.
$P_{1}=$ " $P$ is very true"
$P_{2}=" P$ is false"
where $P=$ " 30 is high", the truth value of $P$ is $0 \cdot 3$, $\mu_{\text {very true }}=\left(\mu_{\text {true }}\right)^{2}$
iii) Give an example of fuzzy Modus Ponens. How it differs from the classification Modus Ponens ? $2+1$
iv) Represent the functions $\frac{x y}{3}$ and $3 x+\frac{y^{2}}{5}$ are tree structures.

CS/M.TECH(ECE-OLD)/SEM-2/MCE-204B/2012
v) Select a suitable crossover point to produce theachild $\frac{x}{3}$ and $3 x y+\frac{y^{2}}{5}$ from the parents $\frac{x y}{3}$ and $3 x y+\frac{y^{2}}{5}$ ?
2. a) Consider the fuzzy sets : short, middle and tall, the membership values of which are represented in the following table :

| cm | Short | Middle | Tall |
| :---: | :---: | :---: | :---: |
| 140 | 1 | 0 | 0 |
| 150 | 1 | 0 | 0 |
| 160 | $0 \cdot 9$ | $0 \cdot 1$ | 0 |
| 170 | $0 \cdot 7$ | 1 | 0 |
| 180 | $0 \cdot 3$ | $0 \cdot 8$ | $0 \cdot 3$ |
| 190 | 0 | 0 | 1 |

i) Compare the support of each set.
ii) What is the normalized fuzzy set ?
iii) Find the level set of each set.
iv) Compare $\alpha$-cut set of each set where $\alpha=0.5$ and $\alpha=0.3$. $4 \times 2^{1 / 2}$
b) Define fuzzy subsets. Show that this concept generalizes the concept of crisp subsets.
$1+3$
3. a) Prove that the standard fuzzy intersection is the upper bond of any fuzzy intersection.
b) Prove that the standard fuzzy intersection is the only idempotent $t$-norm.

8
4. a) State De Luca and Termini axioms which capture our intuitive comprehension of the degree of fuzziness. Define the measure of fuzziness based on the concept of metric distance.
$3+3$
b) There is a fuzzy set $A$ defined on the universal set
$X=\{a, b, c, d\}$
$A=\{(a, 0 \cdot 5),(b, 0 \cdot 2),(c, 0 \cdot 8),(d, 0 \cdot 1)\}$
Find the fuzziness of the set $A$ by using the concept of Shannon's entropy.
c) There is a fuzzy set
$A=\{(1,0 \cdot 4),(2,0 \cdot 8),(3,0 \cdot 4),(4,0 \cdot 1)\}$
i) Find the fuzziness of $A$ using Hamming distance
ii) Find the fuzziness of $A$ using Euclidean distance. 4
5. Use the method of hierarchical clustering to cluster the U.S. cities based on their distances in miles between them. Use single-link method to compute the distances between clusters. The distances are given in the following table :

|  | BOS | NY | DC | MIA | CHI | SEA | SF | LA | DEN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOS | 0 | 206 | 429 | 1504 | 963 | 2976 | 3095 | 2979 | 1949 |
| NY | 206 | 0 | 233 | 1308 | 802 | 2815 | 2934 | 2786 | 1771 |
| DC | 429 | 233 | 0 | 1075 | 671 | 2684 | 2799 | 2631 | 1616 |
| MIA | 1504 | 1308 | 1075 | 0 | 1329 | 3273 | 3053 | 2687 | 2037 |
| CHI | 963 | 802 | 671 | 1329 | 0 | 2013 | 2142 | 2054 | 996 |
| SEA | 2976 | 2815 | 2684 | 3273 | 2013 | 0 | 808 | 1131 | 1307 |
| SF | 3095 | 2934 | 2799 | 3053 | 2142 | 808 | 0 | 379 | 1235 |
| LA | 2979 | 2786 | 2631 | 2687 | 2054 | 1131 | 379 | 0 | 1059 |
| DEN | 1949 | 1771 | 1616 | 2037 | 996 | 1307 | 1235 | 1059 | 0 |

6. How will you estimate an unknown probability distribution from a given dataset ? Mention the Histogram method, Adaptive Histogram method, Kernel Density Estimators and Adaptive Kernel Density Estimators for the same with their advantages and disadvantages.
7. Consider the two dimensional function $f(x, y)$ 道 $x^{2}+y^{2}$. Start with a population of 5 candidate solutions randomly initiation in the range $(-10,10)$ and apply the Differential Evolution algorithm to evolve the population to the next generation.
8. A factory process control operation involves two linguistic parameters consisting of pressure and temperature in a fluid delivery system. Nominal pressure limits range from 400 psi minimum to 1000 psi maximum. Nominal temperature limits are $130^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$. We characterise each parameter in fuzzy linguistic terms as follows:
"Low temperature" $=\left\{\frac{1}{131}+\frac{0 \cdot 8}{132}+\frac{0 \cdot 6}{133}+\frac{0 \cdot 4}{134}+\frac{0 \cdot 2}{135}+\frac{0}{136}\right\}$
"High temperature" $=\left\{\frac{0}{134}+\frac{0 \cdot 2}{135}+\frac{0 \cdot 4}{136}+\frac{0 \cdot 6}{137}+\frac{0 \cdot 8}{138}+\frac{1}{139}\right\}$
"High pressure" $=\left\{\frac{0}{400}+\frac{0 \cdot 2}{600}+\frac{0 \cdot 4}{700}+\frac{0 \cdot 6}{800}+\frac{0 \cdot 8}{900}+\frac{1}{1000}\right\}$
"Low pressure" $=\left\{\frac{1}{400}+\frac{0 \cdot 8}{600}+\frac{0 \cdot 6}{700}+\frac{0 \cdot 4}{800}+\frac{0 \cdot 2}{900}+\frac{0}{1000}\right\}$
a) Find the following membership functions:
i) Temperature not very low
ii) Temperature not very high
iii) Temperature not very low and not very high.
b) Find the following membership functions :
i) Pressure slightly high
ii) Pressure fairly high
iii) Pressure not very low and fairly low.
