	/ Viean /
Name:	(4)
Roll No. :	A Spanner (VE monthly 2nd Exclusion)
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-1/MVLSI-102/2012-13

2012 VLSI DEVICE & MODELLING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Objective Type Questions)

1. Answer any *five* of the following:

- $5 \times 2 = 10$
- i) Draw the energy band diagram of a p-n-p transistor in the cut-off region.
- ii) What do you mean by degenerate semiconductors?Draw the energy band diagram of a degenerate p-n junction.
- iii) What are the advantages of FET over BJT?
- iv) Write down the Shockley equation for JFET.
- v) In which region is an FET operated for designing an amplifier? Does it hold good for BJT also?
- vi) Why is polysilicon preferred as a gate material for MOSFET?

40582 [Turn over

GROUP - B

(Short Answer Type Questions

Answer any three questions.

 $3 \times 5 = 15$

 A p-n junction is made by doping a pure Si sample one side with P (doping concentration: 10¹⁶ cm⁻³) and other side with B (doping concentration: 10¹⁷ cm⁻³).

Given $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ for Si at room temperature.

- a) Which one is N_D and which one is N_A ?
- b) Find V_{bi}
- c) Draw the corresponding energy band diagram. 1 + 2 + 2
- Briefly describe the effects of the fixed charges and the interface charges on the C-V characteristics of a MOS capacitor.
- 4. Draw the schematic diagram of an *n*-channel enhancement MOSFET and briefly describe its operation.
- 5. Explain what is meant by time dependent dielectric breakdown (TDDB).
- 6. A Si p-channel MOSFET is designed to have a saturation current of 8 mA when $V_{\rm GS}$ = 5 V. Determine the ratio between channel width (Z) and channel length (L) by using the square law model. Given that the threshold voltage V_t = 0.5 V, oxide thickness t_{ox} = 40 nm and channel mobility μ_p = 300 cm² / V.s.

40582

(Long Answer Type Questions)

 $3 \times 15 = 45$ Answer any three of the following.

- 7. Plot the capacitance-voltage curve for an *n*-channel MOS capacitor and mark all the operating regions. Explain the nature of the curve for low and high frequencies.
 - b) For an *n*-channel MOS capacitor find (i) C_i (ii) Q_d (iii) C_d (iv) C_{min} (Symbols have their usual significance) (2+1+7)+5
- 8. Explain with a neat diagram the flat band voltage for a a) MOS system.
 - For an Al-SiO₂-pSi MOS device at 300K, given that b) $N_A = 10^{16} \text{ cm}^{-3}, \ t_{ox} = 40 \text{ nm}, \ Q_{ec} = 5 \times 10^{10} \text{ cm}^{-2},$ = 3.20 V, χ = 3.25V, E_g = 1.11eV at $\epsilon_{\rm r}$, (SiO $_2$) = 11.8.

Calculate: (i)

- (ii) Flat band voltage (Φms)
- (iii) Maximum depletion layer width (W_m)
- (iv) Threshold voltage (V_T) 5 + 10
- 9. a) Draw the energy band diagram of a MOS capacitor for a p-type substrate for the following cases:
 - (i) Accumulation (ii) Depletion (iii) Inversion (iv) Strong inversion.
 - What do you mean by DIBL? Explain with a neat b) diagram how this problem can be solved. 10 + 5

CS/M.Tech (ECE)/SEM-1/MVLSI-102/2012-13

 3×5

- 10. State Moore's law. What do you mean by MOSFET scaling?

 How many types of scaling are there? For each type, scale the following parameters:
 - i) $I_{D(linear)}$ ii) $I_{D(sat)}$ iii) Power iv) Power density
- 11 Write short notes on any *three*:
 - a) Metal semiconductor ohmic contact
 - b) Hot electron effects
 - c) Short channel effect
 - d) High frequency model of MOSFET.

40582 4