	<u>Unedh</u>
Name :	(4)
Roll No.:	An Alasman Of Commission 2 and Experience
Inviailator's Sianature:	

2011 ADVANCED MICROWAVE COMMUNICATION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) In a magic tee
 - (a) E-arm and H-arm are isolated from each other
 - b) one of the collinear arms is isolated from H-arm
 - c) one of the collinear arms is isolated from E-arm
 - d) none of these.
- ii) In microwave power measurements using bolometers, the working principle is
 - a) variation of inductance with absorption of power
 - b) variation of capacitance with absorption of power
 - c) variation of resistance with absorption of power
 - d) none of these.

40486 Turn over

- iii) The dominant mode in a waveguide is characterized by
 - a) longest cutoff wavelength
 - b) shortest cutoff wavelength
 - c) infinite attenuation
 - d) zero attenuation.
- iv) When the polarization of the receiving antenna is unknown, to ensure that it receives at least half the power (except in particular situation), the transmitted wave should be
 - a) horizonatally polarization
 - b) vertically polarization
 - c) circularly polarization
 - d) elliptically polarization.
- v) Cassegrain feed is used with a parabolic reflector to
 - a) increase the gain of the system
 - b) increase the bandwith of the system
 - c) adjust the feed to be placed at a convenient point
 - d) none of these.
- vi) The transit time (in cycles) for the electrons in the repeller-space of a reflex klystron oscillator for sustaining oscillations is (*n* is any integer including zero)
 - a) 3(n-2),
- b) 5(n-1)
- c) 2n + 3/4
- d) n + 3/4.

- vii) Which one of the following can be used for amplification of microwave energy?
 - a) Magnetron
- b) Two cavity klystron

c) TWT

- d) Tunnel diode.
- viii) The semiconductor diode which can be used in switching circuits at microwave range is
 - a) PIN diode
- b) varactor diode
- c) tunnel diode
- d) Gunn diode.
- ix) The antenna most commonly used for TV broadcasting in the UHF band is
 - a) turnstile antenna
- b) dipole antenna
- c) Yagi antenna
- d) Rhombic antenna.
- x) Waveguide section in a microwave circuit will act as a
 - a) high pass filter
- b) low pass filter
- c) band pass filter
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Calculate maximum usable frequency of transmission between two stations of 500km if electron density is 10^{12} electron per cubic metre and height = 240 km.

- 3. Calculate the ratio of circular waveguide cross-section area to rectangular waveguide cross-section having similar cut-off wavelengths for the dominant mode in TE. Assume suitable data. Given both have $(X_{11} = 1.841)$.
- 4. A transmission line has the following parameters $r = 0.5 \ \Omega/m$, $G = 0.5 \ m$ -mho/m, $f = 1 \ GHz$, $L = 8 \ mH/m$, and $C = 0.23 \ pf$. Calculate the propagation constant of the line.
- 5. A TE_{11} mode is propagating in a rectangular waveguide of dimensions $a = 6 \,\mathrm{cm}$, $b = 4 \,\mathrm{cm}$, the distance between maximum and minimum points is found to be 4.55 cm. find the frequency of the wave.
- 6. Discuss applications of magic Tee.
- 7. Derive Friis transmission formula for radio communication link.
- 8. Explain the industrial applications of microwave.
- 9. What are the limitations of microwave vacuum tubes.
- 10. Define (a) Antenna gain, (b) Directivity, (c) Radiation pattern.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 11. Explain the operation principle and find out the scattering matrix of a directional coupler.
- 12. Discuss the operation principle of a magic tee. Find out its scattering matrix.

40486 4

- 13. Derive the cut-off magnetic field and cut-off voltage of magnetron.
- 14. a) Derive the flare angle and horn length of a pyramidal horn antenna.
 - b) a pyramidal horn antenna having E-plane aperture a_E = 10λ , path length difference δ = 0.2λ in the *E*-plane and 0.32λ in the *H*-plane. Calculate the (i) horn length, (ii) H-plane aperture, (iii) flare angles θ_E and θ_H , (iv) Directivity.
- 15. Write short notes on any four of the following:
 - a) Energy band diagram of Tunnel diode
 - b) Waveguide excitation
 - c) Quarter wavelength transformer
 - d) Dfferential negative resistance of GUNN diode
 - e) Dominant mode
 - f) Degenerate mode
 - g) Phase velocity
 - h) Group velocity.

- 16. a) Derive the Friis power transmission formula for Microwave communication systems.
 - b) The Direct Broadcast System (DBS) operates at 12.2-12.7 GHz with a transmit carrier power 5 of 120 watt, a transmit antenna gain of 34dB, an IF bandwidth of 20 MHz, and a worstcase slant angle (30°) distance from the geosynchronous satellite to earth of 39000 km. The 18'' receiving dish antenna has a gain of 33.5 dB and sees an average background brightness temperature of $T_b = 50$ K with a receiver, low noise block having a noise figure of 1.1 dB. The overall system is shown in fig1.

Fig. 1

Find out (i) the EIRP of the transmitter,

(ii) the received carrier power at the receive antenna terminals.

40486

- 17. What is Faraday rotation? Explain the working principle of isolator.
- 18. Explain the working principle of TRAPATT diode.
- 19. The frequency of a wave propagating in a parallel plate waveguide (Rectangular waveguide) is 6 GHz & plane of separation is 3 cm. Calculate
 - i) the cut-off wavelength for dominant mode.
 - ii) phase velocity of the waveguide.
- 20. Derive the electric and magnetic field equations of TM mode in rectangular waveguide. What is the cut-off frequency of a rectangular waveguide?

40486 7 [Turn over